典型固废资源化技术清单收集数据集|固废资源化数据集|环境保护数据集
收藏MMOral
MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。
arXiv 收录
OpenECG
OpenECG是一个包含来自九个中心共120万份12导联ECG记录的大型基准数据集,用于评估基于公开数据集训练的ECG基础模型。该数据集整合了多个公开可用的12导联ECG数据集,涵盖了483,837名患者的1,233,337份ECG记录,包括临床诊断标注和自监督学习的未标注原始信号。
arXiv 收录
ERIC (Education Resources Information Center)
ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。
eric.ed.gov 收录
FACED
FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。
arXiv 收录
XS-Video
XS-Video数据集是由中国科学院自动化研究所MAIS实验室提出的一个大规模现实世界短视频传播数据集。该数据集收集了来自中国五大平台(抖音、快手、西瓜视频、今日头条、哔哩哔哩)的117720个短视频,包含381926个样本和535个话题,覆盖了从发布后的互动信息,如观看、点赞、分享、收藏、粉丝和评论等。数据集通过跨平台指标对齐方法,对视频的长期传播影响力进行评分,分为0到9级,旨在为短视频传播研究提供全面的互动信息和内容特征。
arXiv 收录
