five

DNA metabarcoding of corvid faecal samples|DNAmetabarcoding数据集|野生动物管理数据集

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
DNAmetabarcoding
野生动物管理
下载链接:
https://zenodo.org/records/10520128
下载链接
链接失效反馈
资源简介:
Establishing methods that allow for more focused management of wildlife under predator pressure may increase the efficiency of managing problematic predators. Non-invasive dietary analysis and identification of conservation-sensitive prey in the diet of 'culprit' predator individuals could help to facilitate this and is worthy of exploration. Recently on Phillip Island, Australia, Little Ravens Corvus mellori have emerged as a prominent predator on the clutches of burrow-nesting Little Penguins Eudyptula minor. We tested the feasibility of using non-invasive PCR approaches targeting the penguin mitochondrial 16S rRNA marker gene to establish whether penguin DNA could be detected in raven faecal samples, potentially enabling the identification of culprit ravens missed by extensive field observation. Using a metabarcoding approach, we examined the feasibility of non-invasively establishing other dietary items via high throughput amplicon sequencing. We documented components of raven diet using the universal mitochondrial 16S rRNA, insect-specific 'Chiar' 16S rRNA, and plant ITS2. The assemblage of dietary items did not differ with raven culprit status (i.e. a raven previously observed preying upon penguin), sex, or date. Penguin was detected in the diet of some individuals classified observationally as non-culprits. While some cases may conceivably have been false detections, other explanations include missed depredation events, consumption via scavenging, or consumption through secondary consumption (e.g. eating invertebrates that have consumed penguin). While this study found metabarcoding unreliable for unambiguous assigning of raven culprit status, at least as we implemented it, it may hold promise complementing observations if consumption via scavenging can be distinguished from direct depredation.
创建时间:
2024-01-18
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录

TROPOMI

TROPOMI(Tropospheric Monitoring Instrument)数据集包含大气成分的观测数据,主要用于监测臭氧、二氧化氮、甲醛、甲烷、二氧化碳等气体,以及气溶胶和云层。这些数据有助于研究空气质量、气候变化和环境监测。

www.tropomi.eu 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录