five

UNI-CEN Boundaries (CBF-Original Shorelines) - Province/Territory (PR) - 2006 - File Geodatabase format (WGS84 / EPSG:4326)

收藏
DataONE2023-04-03 更新2024-06-08 收录
下载链接:
https://search.dataone.org/view/sha256:0d658f59f36cbcf22e58ed3679fd152e5a0d722eca8e84a6f424602a56c8d97d
下载链接
链接失效反馈
资源简介:
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
创建时间:
2023-12-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

Global Firepower Index (GFI)

Global Firepower Index (GFI) 是一个评估全球各国军事力量的综合指数。该指数考虑了超过50个因素,包括军事预算、人口、陆地面积、海军力量、空军力量、自然资源、后勤能力、地理位置等。数据集提供了每个国家的详细评分和排名,帮助分析和比较各国的军事实力。

www.globalfirepower.com 收录

CAS 滑坡数据集:用于山体滑坡检测深度学习的大规模多传感器数据集

在这项工作中,我们提出了CAS滑坡数据集,这是一个用于基于深度学习的滑坡检测的大规模多传感器数据集,由中国科学院(CAS)山地灾害与环境研究所的人工智能小组开发。该数据集旨在解决滑坡识别中遇到的挑战。随着气候变化和地震导致的山体滑坡发生率增加,人们越来越需要一个精确而全面的数据集来支持快速有效的山体滑坡识别。与现有数据集的数据集大小、覆盖范围、传感器类型和分辨率限制相比,CAS 滑坡数据集包括 20,958 张图像,整合了来自 <> 个地区的卫星和无人机数据。为了确保可靠性和适用性,我们建立了一种稳健的方法来评估数据集的质量。我们建议使用CAS滑坡数据集作为构建滑坡识别模型的基准,并促进深度学习技术的发展。研究人员可以利用该数据集获得增强的预测、监测和分析能力,从而推进自动滑坡检测。如果您打算使用我们的数据集,请通过引用我们在您的项目中的工作来感谢我们的研究。

DataCite Commons 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

SuMeyYao/ysmpubmedclt

该数据集的许可证为apache-2.0,主要用于表格问答任务,数据集语言为英语,大小介于1亿到10亿之间。

hugging_face 收录