Data from: Prediction model for aerodynamic coefficients of iced quad bundle conductors based on machine learning method|电力系统数据集|机器学习数据集

收藏
Mendeley Data2024-05-10 更新2024-06-30 收录
电力系统
机器学习
下载链接:
https://zenodo.org/records/4695048
下载链接
链接失效反馈
资源简介:
The lift, drag and torsional moment coefficients, versus wind attack angle of iced quad bundle conductors in the cases of different conductor structure, ice and wind parameters are numerically simulated and investigated. With the Latin hypercube sampling (LHS) and numerical simulation, sampling points are designed and datasets are created. Set the number of sub-conductors, wind attack angle, bundle spacing, ice accretion angle, ice thickness, wind velocity and diameter of conductor as the input variables, a prediction model for the lift, drag and moment coefficients of iced quad bundle conductors is created, trained and tested based on the dataset and extra-trees algorithm. The final integrated prediction model is further validated by applying the aerodynamic coefficients from the prediction model and numerical simulation respectively to analyze the galloping features. The developed efficient prediction model for the aerodynamic coefficients of iced quad bundle conductors plays an important role in the quick investigation, prediction and early warning of galloping.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
5,000+
优质数据集
54 个
任务类型
进入经典数据集
二维码
社区交流群

面向社区/商业的数据集话题

二维码
科研交流群

面向高校/科研机构的开源数据集话题