five

allenai/prosocial-dialog|对话系统数据集|人工智能伦理数据集

收藏
hugging_face2023-02-03 更新2024-03-04 收录
对话系统
人工智能伦理
下载链接:
https://hf-mirror.com/datasets/allenai/prosocial-dialog
下载链接
链接失效反馈
资源简介:
ProsocialDialog是第一个大规模的多轮英语对话数据集,旨在教导对话代理如何根据社会规范回应有问题的内容。该数据集涵盖了多样化的不道德、有问题的、偏见和有毒的情境,并提供了鼓励亲社会行为的回应,这些回应基于常识性的社会规则(即规则-of-thumb, RoTs)。数据集通过人机协作框架创建,包含58K个对话,331K个话语,160K个独特的RoTs,以及497K个对话安全标签,并附有自由形式的理由。
提供机构:
allenai
原始信息汇总

ProsocialDialog 数据集概述

数据集描述

  • 名称: ProsocialDialog
  • 语言: 英语
  • 许可证: cc-by-4.0
  • 多语言性: 单语种
  • 大小: 10K<n<100K 和 100K<n<1M
  • 来源: 原始数据集和扩展数据集(social_bias_frames)
  • 标签: 对话、对话安全、社会规范、经验法则
  • 任务类别: 会话、文本分类
  • 任务ID: 对话生成、多类分类

数据集概要

ProsocialDialog 是一个大规模的多轮英语对话数据集,旨在教导对话代理如何根据社会规范回应问题内容。该数据集包含58K对话,331K话语,160K独特的经验法则(RoTs),以及497K对话安全标签,附带自由形式的推理。

支持的任务

  • 对话回应生成
  • 对话安全预测
  • 经验法则生成

数据集结构

数据属性

属性 类型 描述
context str 潜在不安全的话语
response str 基于经验法则(RoTs)的指导性话语
rots list of str null
safety_label str 根据 safety_annotations 对上下文的最终判断
safety_annotations list of str 来自三名工人的原始安全标注
safety_annotation_reasons list of str 安全标注背后的原因,以自由文本形式提供
source str 用于构建对话首句的种子文本来源
etc str null
dialogue_id int 对话索引
response_id int 回应索引
episode_done bool 对话是否结束的指示器

数据集创建

ProsocialDialog 是通过人机协作的数据创建框架生成的,其中GPT-3生成潜在的不安全话语,而众包工人提供基于社会规范的回应。这种方法解决了两个主要挑战:缺乏大规模的多轮社会规范对话人类语料库,以及要求人类编写不道德、有毒或问题性话语可能造成的心理伤害。

AI搜集汇总
数据集介绍
main_image_url
构建方式
ProsocialDialog数据集的构建,是在一个人类与AI协作的框架下进行的。该框架中,GPT-3生成可能存在风险的发言,而众包工作者则针对这些发言提供促进亲社会行为的回应。这种构建方式解决了两个重要问题:一是缺乏大规模的多轮人类亲社会对话语料库;二是避免让人类编写不道德、有毒或有问题的话语可能带来的心理伤害。
使用方法
用户可以使用ProsocialDialog数据集进行对话回应生成、对话安全预测和经验法则生成等任务。该数据集的结构包括多个属性,如上下文、回应、相关经验法则、安全标签、安全注释及原因、种子文本来源等,这些属性为研究提供了丰富的信息。用户在引用此数据集时,应遵循cc-by-4.0许可,并参考相关的学术论文进行引用。
背景与挑战
背景概述
ProsocialDialog数据集,由Allen Institute for Artificial Intelligence的研究团队于2022年创建,旨在为对话系统提供一种积极响应社会规范,对问题内容作出适宜反应的训练资源。该数据集凝聚了58K多轮对话,包含331K条对话语句,160K个社会常识规则(rules-of-thumb,RoTs),以及497K个对话安全标签,这些标签均附有自由形式的注释。数据集的构建采用了人机协作框架,其中GPT-3生成潜在的不安全话语,而众包工作者则提供基于RoTs的积极社会响应。此数据集的问世,对于推动对话系统在社会规范遵守方面的研究具有重要的意义。
当前挑战
ProsocialDialog数据集在构建过程中遇到的挑战主要包括:缺乏大规模的多轮积极对话语料库,以及直接要求人类编写不道德、有毒或有问题的话语可能造成的心理伤害。此外,数据集在解决对话安全预测、规则-of-thumb生成等任务时,也面临着如何准确捕捉和反映社会规范动态变化的问题。在数据集的应用研究中,如何确保对话系统的反应既能遵循社会规范,又能保持自然和有效性,是一个持续的技术挑战。
常用场景
经典使用场景
在当前人工智能对话系统研究领域,ProsocialDialog数据集以其独特的构造理念,为对话安全性与规范性提供了重要支撑。该数据集被广泛用于训练对话系统,使其能够在面对不安全或不恰当的对话内容时,依据社会规范和常识规则作出积极的、促进社会和谐的反应。
解决学术问题
ProsocialDialog数据集解决了现有对话系统中缺乏处理复杂社会规范和不安全对话内容的能力的问题。通过引入社会规范和常识规则,该数据集帮助学术研究者开发出能够遵循社会道德准则、避免有害内容传播的对话模型,对于提升对话系统的安全性和可靠性具有重要意义。
实际应用
在实际应用中,ProsocialDialog数据集的应用范围广泛,包括但不限于在线聊天机器人、虚拟助手和社交媒体平台。它能够帮助这些系统在处理用户交互时,更好地识别和应对潜在的伦理和社会规范问题,从而提高用户体验和平台安全性。
数据集最近研究
最新研究方向
在自然语言处理领域,ProsocialDialog数据集的构建与运用代表了对话系统研究的新趋势,旨在通过遵循社会规范的响应,引导对话代理展现出亲社会行为。该数据集不仅覆盖了广泛的不道德、有问题、偏见和有毒情况,还提供了基于常识社会规则(即经验法则)的引导性回应。近期研究利用ProsocialDialog数据集,重点探索对话安全预测、基于经验法则的回应生成等任务,为对话系统的道德与安全性研究提供了新的视角和资源。此数据集的推出,对于促进对话系统在遵循社会规范、减少有害内容影响方面具有重要意义,为相关领域的研究提供了宝贵的数据支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

UCM-Captions, Sydney-Captions, RSICD, RSITMD, NWPU-Captions, RS5M, SkyScript

UCM-Captions: 包含613张图像,分辨率为256×256。Sydney-Captions: 包含2,100张图像,分辨率为500×500。RSICD: 包含10,921张图像,分辨率为224×224。RSITMD: 包含4,743张图像,分辨率为256×256。NWPU-Captions: 包含31,500张图像,分辨率为256×256。RS5M: 包含超过500万张图像,分辨率为所有可能的分辨率。SkyScript: 包含520万张图像,分辨率为所有可能的分辨率。

github 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录