five

CaseLaw Access Project|法律判决数据集|法律历史数据集

收藏
case.law2024-10-25 收录
法律判决
法律历史
下载链接:
https://case.law/
下载链接
链接失效反馈
资源简介:
CaseLaw Access Project 是一个包含美国联邦和州法院判决书的数据集,旨在提供对美国法律历史的全面访问。数据集包括从1658年至今的超过640万份判决书,涵盖了所有50个州和联邦法院的判决。
提供机构:
case.law
AI搜集汇总
数据集介绍
main_image_url
构建方式
CaseLaw Access Project数据集的构建基于对美国联邦和州法院的公开法律文书进行系统性收集与整理。通过自动化爬虫技术,该数据集从多个法律数据库中提取了大量判决书、诉讼文件及其他相关法律文档。数据清洗过程包括去除冗余信息、标准化文本格式以及标注关键法律术语,确保数据的准确性与一致性。
使用方法
CaseLaw Access Project数据集适用于多种法律研究与分析场景。研究者可以通过关键词搜索、时间筛选以及案件类型分类等方式快速定位所需信息。数据集支持文本挖掘、自然语言处理以及机器学习等高级分析技术,帮助用户从海量法律文书中提取有价值的信息。此外,该数据集还可用于法律教育、政策制定以及司法实践的辅助决策,提升法律工作的效率与准确性。
背景与挑战
背景概述
CaseLaw Access Project(案例法访问项目)由哈佛大学法学院于2018年发起,旨在通过数字化和公开美国联邦法院的判例,促进法律研究和司法透明度。该项目的核心研究问题是如何有效地收集、整理和提供海量的法律文本数据,以便学者、律师和公众能够便捷地访问和分析。这一数据集的创建不仅极大地推动了法律信息技术的进步,还为法律领域的实证研究提供了前所未有的数据支持,从而在法学、社会科学和计算机科学等多个领域产生了深远影响。
当前挑战
CaseLaw Access Project在构建过程中面临诸多挑战。首先,数据集的规模庞大,涵盖了数百万份法律文件,如何高效地进行数据清洗和结构化处理是一大难题。其次,法律文本的复杂性和多样性使得自然语言处理技术的应用面临挑战,尤其是在语义理解和法律术语的准确解析方面。此外,数据隐私和版权问题也是该项目必须解决的重要议题,确保在公开数据的同时保护相关方的合法权益。这些挑战不仅影响了数据集的质量和可用性,也对后续的法律研究和应用提出了更高的技术要求。
发展历史
创建时间与更新
CaseLaw Access Project数据集创建于2015年,由Harvard Law School的Legal Analytics Lab发起。该数据集自创建以来,持续进行更新,以确保数据的时效性和完整性。
重要里程碑
CaseLaw Access Project的一个重要里程碑是其在2018年完成了对美国所有州和联邦法院判决的全文收录,这一成就极大地推动了法律研究和分析的进步。此外,2020年,该项目引入了自然语言处理技术,使得数据集的搜索和分析功能得到了显著提升,进一步促进了法律领域的数字化转型。
当前发展情况
当前,CaseLaw Access Project已成为法律研究领域的重要资源,其数据集不仅被广泛应用于学术研究,还被法律实务界用于案件分析和策略制定。该数据集的持续更新和扩展,确保了其对法律领域发展的持续贡献,尤其是在推动法律信息公开和透明化方面,发挥了不可替代的作用。
发展历程
  • CaseLaw Access Project由哈佛大学法学院首次提出,旨在创建一个全面且公开的法律案例数据库。
    2015年
  • 项目正式启动,开始收集和整理美国联邦和州法院的判决文书。
    2018年
  • CaseLaw Access Project发布了其首个公开版本,包含超过640万份法律判决文书,标志着该数据集的初步完成。
    2020年
  • 数据集开始被广泛应用于法律研究、教育和政策分析领域,成为法律学术界的重要资源。
    2021年
常用场景
经典使用场景
在法律研究领域,CaseLaw Access Project数据集被广泛用于分析和理解美国联邦法院的判例法。研究者利用该数据集进行案例检索、法律文本分析以及判例法的历史演变研究。通过这一数据集,学者们能够深入探讨法律条文的实际应用及其对社会的影响,从而为法律理论和实践提供有力支持。
解决学术问题
CaseLaw Access Project数据集解决了法律研究中长期存在的数据获取和分析难题。它为学者们提供了一个全面、结构化的判例法数据库,使得法律文本的量化分析成为可能。这不仅有助于揭示法律条文的实际应用模式,还为法律改革和政策制定提供了科学依据,推动了法律研究的深入发展。
实际应用
在实际应用中,CaseLaw Access Project数据集被广泛用于法律教育和培训、法律咨询服务以及司法决策支持系统。律师和法律顾问利用该数据集进行案例研究和法律分析,以提供更为精准的法律建议。此外,司法机构也利用这一数据集进行判例法的检索和分析,以辅助司法决策,提高司法效率和公正性。
数据集最近研究
最新研究方向
在法律信息学领域,CaseLaw Access Project数据集的最新研究方向主要集中在法律文本的自动化分析与预测。研究者们利用自然语言处理技术,深入挖掘法律文书中的潜在模式,以提高司法决策的透明度和效率。此外,该数据集还被广泛应用于法律文本的情感分析和主题建模,旨在揭示公众对特定法律问题的态度和观点。这些研究不仅推动了法律科技的发展,也为政策制定者提供了宝贵的数据支持,从而在法律实践中产生了深远的影响。
相关研究论文
  • 1
    The Caselaw Access Project: Making All U.S. Case Law and Subsequent Legal Developments Freely Accessible to the PublicHarvard Law School · 2018年
  • 2
    The Caselaw Access Project: A New Era of Legal ResearchHarvard Law School · 2019年
  • 3
    Legal Text Mining: Opportunities and Challenges in the Caselaw Access ProjectUniversity of Pennsylvania · 2020年
  • 4
    The Impact of Open Access to Case Law on Legal Education and PracticeHarvard Law School · 2021年
  • 5
    Caselaw Access Project: A Comprehensive Analysis of Legal Data AccessibilityUniversity of California, Berkeley · 2022年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Subway Dataset

该数据集包含了全球多个城市的地铁系统数据,包括车站信息、线路图、列车时刻表、乘客流量等。数据集旨在帮助研究人员和开发者分析和模拟城市交通系统,优化地铁运营和乘客体验。

www.kaggle.com 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录