five

Replication Data for: Overturn of Ilmenite-Bearing Cumulates in a Rheologically Weak Lunar Mantle|月球地质数据集|流变学模拟数据集

收藏
DataCite Commons2024-01-24 更新2024-07-13 收录
月球地质
流变学模拟
下载链接:
https://refubium.fu-berlin.de/handle/fub188/42193
下载链接
链接失效反馈
资源简介:
The crystallization of the lunar magma ocean (LMO) determines the initial structure of the solid Moon. Near the end of the LMO crystallization, ilmenite-bearing cumulates (IBC) form beneath the plagioclase crust. Being denser than the underlying mantle, IBC are prone to overturn, a hypothesis that explains several aspects of the Moon's evolution. Yet the formation of stagnant lid due to the temperature dependence of viscosity can easily prevent IBC from sinking. To infer the rheological conditions allowing IBC to sink, we calculated the LMO crystallization sequence and performed high-resolution numerical simulations of the overturn dynamics. We assumed a diffusion creep rheology and tested the effects of reference viscosity, activation energy, and compositional viscosity contrast between IBC and mantle. The overturn strongly depends on reference viscosity and activation energy and is facilitated by a low IBC viscosity. For a reference viscosity of 1021 Pa s, characteristic of a dry rheology, IBC overturn cannot take place. For a reference viscosity of 1020 Pa s, the overturn is possible if the activation energy is a factor of 2–3 lower than the values typically assumed for dry olivine. These low activation energies suggest a role for dislocation creep. For lower-reference viscosities associated with the presence of water or trapped melt, more than 95% IBC can sink regardless of the activation energy. Scaling laws for Rayleigh-Taylor instability confirmed these results but also showed the need of numerical simulations to accurately quantify the overturn dynamics. Whenever IBC sink, the overturn occurs via small-scale diapirs.
提供机构:
Freie Universität Berlin
创建时间:
2024-01-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录

CliMedBench

CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。

arXiv 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录