five

"Table 7" of "Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector"

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
下载链接:
https://www.hepdata.net/record/99285
下载链接
链接失效反馈
资源简介:
A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical $Z^{\prime}$ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross-sections, the $Z^{\prime}$ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1−3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 TeV to 0.9 TeV and from 2.0 TeV to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录

Employee Performance Dataset

该数据集包含新员工的实际表现数据,包括人口统计信息和测试分数。它作为高级线性代数在机器学习中的应用课程作业的基础资源,用于编写机器学习代码。

github 收录

Global Crop Production Dataset (GCPD)

全球作物生产数据集(GCPD)提供了全球范围内主要作物的生产数据,包括产量、种植面积和收获面积等信息。该数据集涵盖了多个国家和地区的农业生产情况,旨在为农业研究、政策制定和市场分析提供数据支持。

www.fao.org 收录

UCF-Crime

UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。

OpenDataLab 收录