five

"Table 7" of "Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector"

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
下载链接:
https://www.hepdata.net/record/99285
下载链接
链接失效反馈
资源简介:
A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical $Z^{\prime}$ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross-sections, the $Z^{\prime}$ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1−3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 TeV to 0.9 TeV and from 2.0 TeV to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

alpacaGPT4_llama8b-v120-jb-seed2-alpaca_512_ngt0.7_tp0.9

该数据集包含了用户和助手之间的对话,具有用户和助手发言的文本特征,以及一个索引级别特征。数据集分为训练集,共有52001条对话记录。

huggingface 收录

UAVid

UAVId 是一个高分辨率的无人机语义分割数据集作为补充,它带来了新的挑战,包括大规模变化、运动物体识别和时间一致性保持。 UAV 数据集由 30 个视频序列组成,这些视频序列在倾斜视图中捕获 4K 高分辨率图像。总共有 300 张图像被密集标记为 8 个类别,用于语义标记任务。

OpenDataLab 收录

QM9

该数据集名为QM9,包含了134,000个分子的信息,可用于生成点云的建模工作,同时也可应用于分子动力学的研究以及点云生成任务中。

arXiv 收录

CMU-MOSI

CMU-MOSI数据集包括了从93个YouTube的视频中获取的2199个独白类型的短视频片段。每个片段都是一个独立的多模态示例,其中图像、文本和音频占比是均匀的,情感分数取值为[-3,+3],表示从强负向到强正向情感。

DataCite Commons 收录