Eurus-2-RL-Data|强化学习数据集|编程竞赛数据集
收藏Eurus-2-RL-Data 数据集概述
数据集简介
Eurus-2-RL-Data 是一个高质量的强化学习训练数据集,包含数学和编程问题,并提供了结果验证器(数学问题的LaTeX答案和编程问题的测试用例)。
- 数学问题:数据来源于 NuminaMath-CoT,涵盖从中国高中数学到国际数学奥林匹克竞赛的题目。
- 编程问题:数据来源于 APPS、CodeContests、TACO 和 Codeforces,主要为编程竞赛级别的题目。
数据预处理
为了提高数据质量,数据集进行了详细的清洗和过滤。
- 数学问题:使用高级推理模型(如 Qwen-QwQ)过滤掉无法解决、不匹配或答案错误的问题,并将选择题转换为开放性问题。
- 编程问题:主要过滤掉重复的问题。
最终保留了 455k 个数学问题和 27k 个编程问题。
数据集结构
数据集包含训练集和验证集,具体结构如下:
python from datasets import load_dataset
ds = load_dataset("PRIME-RL/Eurus-2-RL-Data") print(ds)
DatasetDict({
train: Dataset({
features: [id, task, source, instruction, reference],
num_rows: 482019
})
validation: Dataset({
features: [id, task, source, instruction, reference],
num_rows: 2048
})
})
数据统计
| Train | Validation | |
|---|---|---|
| Math | 455261 | 1024 |
| Coding | 26758 | 1024 |
数据示例
数学问题
json { "id": "numina_amc_aime_1931", "task": "Math", "source": "numina_amc_aime", "instruction": "Given that $\frac{2}{7}$ of the knights are red, and $\frac{1}{6}$ of the knights are magical, and that the fraction of red knights who are magical is $2$ times the fraction of blue knights who are magical, find the fraction of red knights who are magical.
Present the answer in LaTex format: \boxed{Your answer}", "reference": "\frac{7}{27}" }
编程问题
json { "id": "codecontests_0", "task": "Coding", "source": "codecontests", "instruction": "You are given undirected weighted graph. Find the length of the shortest cycle which starts from the vertex 1 and passes throught all the edges at least once. Graph may contain multiply edges between a pair of vertices and loops (edges from the vertex to itself).
Input
The first line of the input contains two integers n and m (1 ≤ n ≤ 15, 0 ≤ m ≤ 2000), n is the amount of vertices, and m is the amount of edges. Following m lines contain edges as a triples x, y, w (1 ≤ x, y ≤ n, 1 ≤ w ≤ 10000), x, y are edge endpoints, and w is the edge length.
Output
Output minimal cycle length or -1 if it doesnt exists.
Examples
Input
3 3 1 2 1 2 3 1 3 1 1
Output
3
Input
3 2 1 2 3 2 3 4
Output
14
Write Python code to solve the problem. Present the code in python Your code
at the end.", "reference": "{"inputs": ["3 3\n1 2 1\n2 3 1\n3 1 1\n", "3 2\n1 2 3\n2 3 4\n", "2 10\n1 2 9\n1 2 9\n2 1 9\n1 2 8\n2 1 9\n1 2 9\n1 2 9\n1 2 11\n1 2 9\n1 2 9\n", "4 4\n1 3 1953\n3 2 2844\n1 3 2377\n3 2 2037\n", "2 1\n2 2 44\n", "4 8\n1 2 4824\n3 1 436\n2 2 3087\n2 4 2955\n2 4 2676\n4 3 2971\n3 4 3185\n3 1 3671\n", "15 14\n1 2 1\n2 3 1\n2 4 1\n3 5 1\n3 6 1\n4 7 1\n4 8 1\n5 9 1\n5 10 1\n6 11 1\n6 12 1\n7 13 1\n7 14 1\n8 15 1\n", "15 0\n", "3 1\n3 2 6145\n", "15 4\n1 5 5531\n9 15 3860\n8 4 6664\n13 3 4320\n", "7 3\n4 4 1\n7 7 1\n2 2 1\n", "2 8\n1 2 4618\n1 1 6418\n2 2 2815\n1 1 4077\n2 1 4239\n1 2 5359\n1 2 3971\n1 2 7842\n", "4 2\n1 2 1\n3 4 1\n", "6 2\n5 3 5039\n2 3 4246\n", "2 1\n2 2 5741\n", "4 2\n3 2 6816\n1 3 7161\n", "15 1\n7 5 7838\n", "6 4\n5 4 6847\n3 6 7391\n1 6 7279\n2 5 7250\n", "15 2\n5 13 9193\n14 5 9909\n", "5 2\n2 2 2515\n2 4 3120\n", "3 3\n1 2 1\n2 3 1\n3 2 1\n", "3 1\n3 2 6389\n", "10 3\n4 4 1\n7 7 1\n2 2 0\n", "6 2\n5 5 5039\n1 3 4246\n", "15 1\n9 9 7838\n", "6 4\n5 4 6847\n3 6 7391\n1 3 2446\n2 5 7250\n", "1 2\n1 1 1\n1 1 3\n", "6 0\n", "3 1\n3 3 9184\n", "10 3\n4 4 0\n7 7 1\n2 2 0\n", "6 2\n5 5 5039\n1 3 7812\n", "15 1\n3 9 7838\n", "4 4\n1 3 1953\n4 4 2844\n2 3 4041\n3 2 2037\n"], "outputs": ["3\n", "14\n", "91\n", "9211\n", "-1\n", "28629\n", "28\n", "0\n", "-1\n", "-1\n", "-1\n", "43310\n", "-1\n", "-1\n", "-1\n", "27954\n", "-1\n", "-1\n", "73199\n", "44\n", "3\n", "-1\n", "8\n", "0\n", "-1\n", "-1\n", "-1\n", "3059\n", "7042\n", "-1\n", "0\n", "22019\n", "69034\n", "6\n", "9683\n", "14464\n", "-1\n", "6222\n", "95162\n", "35262\n", "0\n", "-1\n", "90\n", "3669\n", "315043\n", "9\n", "41\n", "10875\n", "26917\n", "28\n", "-1\n", "46065\n", "4\n", "11482\n", "27874\n", "5\n", "2957\n", "7043\n", "69034\n", "9547\n", "12136\n", "0\n", "87\n", "307170\n", "35\n", "7\n", "14865\n", "27196\n", "44599\n", "7039\n", "8481\n", "11646\n", "80\n", "316201\n", "9\n", "15672\n", "26868\n", "7029\n", "10119\n", "85\n", "24495\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "4\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "4\n", "0\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n"]}" }
引用
latex @misc{cui2024process, title={Process Reinforcement through Implicit Rewards}, author={Ganqu Cui and Lifan Yuan and Zefan Wang and Hanbin Wang and Wendi Li and Bingxiang He and Yuchen Fan and Tianyu Yu and Qixin Xu and Weize Chen and Jiarui Yuan and Huayu Chen and Kaiyan Zhang and Xingtai Lv and Shuo Wang and Yuan Yao and Hao Peng and Yu Cheng and Zhiyuan Liu and Maosong Sun and Bowen Zhou and Ning Ding}, year={2025} }
latex @article{yuan2024implicitprm, title={Free Process Rewards without Process Labels}, author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng}, journal={arXiv preprint arXiv:2412.01981}, year={2024} }

Tara Oceans
Tara Oceans数据集包含了全球海洋微生物的宏基因组和宏转录组数据,涵盖了从极地到热带的多个海洋生态系统。数据包括微生物的DNA和RNA序列,以及相关的环境元数据。
www.ebi.ac.uk 收录
DIPSEER: A Dataset for In-Person Student Emotion and Engagement Recognition in the Wild
DIPSEER是一个用于识别学生情绪和参与度的数据集,包含图像、标签和传感器数据。
github 收录
Pima Indians Diabetes Database
该项目使用的数据集是Pima Indians Diabetes Database,来源于UCI机器学习库。该数据集包含多个医学预测变量和一个目标变量,即Outcome,用于指示患者是否患有糖尿病(1)或未患(0)。
github 收录
CHIRPS v2.0
CHIRPS v2.0是一个全球降水数据集,提供高分辨率的降水估计,结合了卫星观测和气象站数据。数据集覆盖全球,时间范围从1981年至今,空间分辨率为0.05度。
www.chc.ucsb.edu 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
