Eurus-2-RL-Data|强化学习数据集|编程竞赛数据集
收藏Eurus-2-RL-Data 数据集概述
数据集简介
Eurus-2-RL-Data 是一个高质量的强化学习训练数据集,包含数学和编程问题,并提供了结果验证器(数学问题的LaTeX答案和编程问题的测试用例)。
- 数学问题:数据来源于 NuminaMath-CoT,涵盖从中国高中数学到国际数学奥林匹克竞赛的题目。
- 编程问题:数据来源于 APPS、CodeContests、TACO 和 Codeforces,主要为编程竞赛级别的题目。
数据预处理
为了提高数据质量,数据集进行了详细的清洗和过滤。
- 数学问题:使用高级推理模型(如 Qwen-QwQ)过滤掉无法解决、不匹配或答案错误的问题,并将选择题转换为开放性问题。
- 编程问题:主要过滤掉重复的问题。
最终保留了 455k 个数学问题和 27k 个编程问题。
数据集结构
数据集包含训练集和验证集,具体结构如下:
python from datasets import load_dataset
ds = load_dataset("PRIME-RL/Eurus-2-RL-Data") print(ds)
DatasetDict({
train: Dataset({
features: [id, task, source, instruction, reference],
num_rows: 482019
})
validation: Dataset({
features: [id, task, source, instruction, reference],
num_rows: 2048
})
})
数据统计
| Train | Validation | |
|---|---|---|
| Math | 455261 | 1024 |
| Coding | 26758 | 1024 |
数据示例
数学问题
json { "id": "numina_amc_aime_1931", "task": "Math", "source": "numina_amc_aime", "instruction": "Given that $\frac{2}{7}$ of the knights are red, and $\frac{1}{6}$ of the knights are magical, and that the fraction of red knights who are magical is $2$ times the fraction of blue knights who are magical, find the fraction of red knights who are magical.
Present the answer in LaTex format: \boxed{Your answer}", "reference": "\frac{7}{27}" }
编程问题
json { "id": "codecontests_0", "task": "Coding", "source": "codecontests", "instruction": "You are given undirected weighted graph. Find the length of the shortest cycle which starts from the vertex 1 and passes throught all the edges at least once. Graph may contain multiply edges between a pair of vertices and loops (edges from the vertex to itself).
Input
The first line of the input contains two integers n and m (1 ≤ n ≤ 15, 0 ≤ m ≤ 2000), n is the amount of vertices, and m is the amount of edges. Following m lines contain edges as a triples x, y, w (1 ≤ x, y ≤ n, 1 ≤ w ≤ 10000), x, y are edge endpoints, and w is the edge length.
Output
Output minimal cycle length or -1 if it doesnt exists.
Examples
Input
3 3 1 2 1 2 3 1 3 1 1
Output
3
Input
3 2 1 2 3 2 3 4
Output
14
Write Python code to solve the problem. Present the code in python Your code
at the end.", "reference": "{"inputs": ["3 3\n1 2 1\n2 3 1\n3 1 1\n", "3 2\n1 2 3\n2 3 4\n", "2 10\n1 2 9\n1 2 9\n2 1 9\n1 2 8\n2 1 9\n1 2 9\n1 2 9\n1 2 11\n1 2 9\n1 2 9\n", "4 4\n1 3 1953\n3 2 2844\n1 3 2377\n3 2 2037\n", "2 1\n2 2 44\n", "4 8\n1 2 4824\n3 1 436\n2 2 3087\n2 4 2955\n2 4 2676\n4 3 2971\n3 4 3185\n3 1 3671\n", "15 14\n1 2 1\n2 3 1\n2 4 1\n3 5 1\n3 6 1\n4 7 1\n4 8 1\n5 9 1\n5 10 1\n6 11 1\n6 12 1\n7 13 1\n7 14 1\n8 15 1\n", "15 0\n", "3 1\n3 2 6145\n", "15 4\n1 5 5531\n9 15 3860\n8 4 6664\n13 3 4320\n", "7 3\n4 4 1\n7 7 1\n2 2 1\n", "2 8\n1 2 4618\n1 1 6418\n2 2 2815\n1 1 4077\n2 1 4239\n1 2 5359\n1 2 3971\n1 2 7842\n", "4 2\n1 2 1\n3 4 1\n", "6 2\n5 3 5039\n2 3 4246\n", "2 1\n2 2 5741\n", "4 2\n3 2 6816\n1 3 7161\n", "15 1\n7 5 7838\n", "6 4\n5 4 6847\n3 6 7391\n1 6 7279\n2 5 7250\n", "15 2\n5 13 9193\n14 5 9909\n", "5 2\n2 2 2515\n2 4 3120\n", "3 3\n1 2 1\n2 3 1\n3 2 1\n", "3 1\n3 2 6389\n", "10 3\n4 4 1\n7 7 1\n2 2 0\n", "6 2\n5 5 5039\n1 3 4246\n", "15 1\n9 9 7838\n", "6 4\n5 4 6847\n3 6 7391\n1 3 2446\n2 5 7250\n", "1 2\n1 1 1\n1 1 3\n", "6 0\n", "3 1\n3 3 9184\n", "10 3\n4 4 0\n7 7 1\n2 2 0\n", "6 2\n5 5 5039\n1 3 7812\n", "15 1\n3 9 7838\n", "4 4\n1 3 1953\n4 4 2844\n2 3 4041\n3 2 2037\n"], "outputs": ["3\n", "14\n", "91\n", "9211\n", "-1\n", "28629\n", "28\n", "0\n", "-1\n", "-1\n", "-1\n", "43310\n", "-1\n", "-1\n", "-1\n", "27954\n", "-1\n", "-1\n", "73199\n", "44\n", "3\n", "-1\n", "8\n", "0\n", "-1\n", "-1\n", "-1\n", "3059\n", "7042\n", "-1\n", "0\n", "22019\n", "69034\n", "6\n", "9683\n", "14464\n", "-1\n", "6222\n", "95162\n", "35262\n", "0\n", "-1\n", "90\n", "3669\n", "315043\n", "9\n", "41\n", "10875\n", "26917\n", "28\n", "-1\n", "46065\n", "4\n", "11482\n", "27874\n", "5\n", "2957\n", "7043\n", "69034\n", "9547\n", "12136\n", "0\n", "87\n", "307170\n", "35\n", "7\n", "14865\n", "27196\n", "44599\n", "7039\n", "8481\n", "11646\n", "80\n", "316201\n", "9\n", "15672\n", "26868\n", "7029\n", "10119\n", "85\n", "24495\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "4\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n", "4\n", "0\n", "-1\n", "-1\n", "-1\n", "-1\n", "-1\n"]}" }
引用
latex @misc{cui2024process, title={Process Reinforcement through Implicit Rewards}, author={Ganqu Cui and Lifan Yuan and Zefan Wang and Hanbin Wang and Wendi Li and Bingxiang He and Yuchen Fan and Tianyu Yu and Qixin Xu and Weize Chen and Jiarui Yuan and Huayu Chen and Kaiyan Zhang and Xingtai Lv and Shuo Wang and Yuan Yao and Hao Peng and Yu Cheng and Zhiyuan Liu and Maosong Sun and Bowen Zhou and Ning Ding}, year={2025} }
latex @article{yuan2024implicitprm, title={Free Process Rewards without Process Labels}, author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng}, journal={arXiv preprint arXiv:2412.01981}, year={2024} }

EcoInvent
EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。
www.ecoinvent.org 收录
RAVDESS
情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。
OpenDataLab 收录
Stanford Cars
Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。
OpenDataLab 收录
UIEB, U45, LSUI
本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。
github 收录
LFW
人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download
AI_Studio 收录
