five

Mental Health Datasets|心理健康数据集|数据建模数据集

收藏
github2024-05-16 更新2024-05-31 收录
心理健康
数据建模
下载链接:
https://github.com/kharrigian/mental-health-datasets
下载链接
链接失效反馈
资源简介:
一个不断更新的电子媒体数据集列表,用于建模心理健康状态。

A continuously updated list of electronic media datasets for modeling mental health states.
创建时间:
2019-11-08
原始信息汇总

数据集概述

数据集名称

Mental Health Datasets

数据集描述

该数据集包含了一系列用于模型化心理健康现象的数据集,主要来源于电子/社交媒体。原始数据(包含额外列)可在data_sources.xlsx中找到。

数据集内容

数据集详细信息如下:

Paper Authors Platform Year Target Outcomes
Inferring Social Media Users Mental Health Status from Multimodal Information Xu, Pérez-Rosas, Mihalcea Flickr 2020 Mental Health (General)
Dilated LSTM with attention for Classification of Suicide Notes Schoene, Lacy, Turner, Dethlefs Death Row Last Statements, The Kernel, Tumblr 2019 Suicide, Imminent Death, Depression, Loneliness
Detection of Depression-related Posts in Reddit Social Media Forum Tadesse, Lin, Xu, Yang Reddit, Online Support Forums 2019 Depression
Protecting User Privacy and Rights in Academic Data-Sharing Partnerships: Principles from a pilot program at Crisis Text Line Pisani, Kanuri, Filbin, Gallo, Gould, Lehmann, Levine, Marcotte, Pascal, Rousseau, Turner, Yen, Ranney Crisis Text Line 2019 None
Mental Health Surveillance over Social Media with Digital Cohorts Amir, Dredze, Ayers Twitter 2019 Depression, PTSD, Control
CLPsych 2019 Shared Task: Predicting the Degree of Suicide Risk in Reddit Posts Zirikly, Resnik, Uzuner, Hollingshead Reddit 2019 Suicidal Ideation
Can acute suicidality be predicted by Instagram data? Results from qualitative and quantitative language analyses Brown, Bendig, Fischer, Goldwich, Baumeister, Plener Instagram 2019 Non-suicidal Self-Injury
Methodological Gaps in Predicting Mental Health States from Social Media: Triangulating Diagnostic Signals Ernala, Birnbaum, Candan, Rizvi, Sterling, Kane, De Choudury Twitter, Facebook 2019 Schizophrenia
Suicide Risk Assessment with Multi-level Dual-Context Language and BERT Matero, Idnani, Son, Giorgi, Vu, Zamani, Limbachiya, Guntuku, Schwartz Reddit 2019 Suicidal Ideation
Latent Suicide Risk Detection on Microblog via Suicide-Oriented Word Embeddings and Layered Attention Cao, Zhang, Feng, Wei, Wang, Li, He Sina Weibo 2019 Suicidal Ideation
Automatic detection of eating disorder-related social media posts that could benefit from a mental health intervention Yan, Fitzsimmons-Craft, Goodman, Krauss, Das, Cavazos-Rehg Reddit 2019 Eating Disorder
Dreaddit: A Reddit Dataset for Stress Analysis in Social Media Turcan, McKeown Reddit 2019 Stress
Detecting Low Self-Esteem in Youths from Web Search Data Zaman, Acharyya, Kautz, Silenzio Google Search 2019 Self-esteem
BioInfo@UAVR at eRisk 2019: delving into social media texts for the early detection of mental and food disorders Trifan, Luís Oliveira Reddit 2019 Anorexia, Depression
Towards Augmenting Crisis Counselor Training by Improving Message Retrieval DeMasi, Hearst, Recht Synthetic Crisis Text Conversations 2019 None (Message Retrieval Task)
Multi-Task, Multi-Channel, Multi-Input Learning for Mental Illness Detection using Social Media Text Kirinde Gamaarachichige, Inkpen Twitter 2019 Depression, PTSD, Control
Adapting Deep Learning Methods for Mental Health Prediction on Social Media Sekulic, Strube Reddit 2019 Depression
User Dynamics in Mental Health Forums -- A Sentiment Analysis Perspective Davcheva, Adam, Benlian 3 Online mental-health forums 2019
AI搜集汇总
数据集介绍
main_image_url
构建方式
精神健康数据集的构建主要依赖于从电子和社交媒体中收集的数据,这些数据经过整理和标注,形成了用于研究心理健康现象的资源。数据集的原始数据存储在`data_sources.xlsx`文件中,包含了多个平台的数据,如Flickr、Reddit、Twitter等。每条数据都附有详细的标注,涵盖了从抑郁症到自杀倾向等多种心理健康问题的研究目标。
特点
该数据集的显著特点在于其多平台、多维度的数据来源,涵盖了从社交媒体到在线支持论坛等多种渠道。数据集不仅包括文本信息,还可能包含图像等多模态数据,为研究者提供了丰富的分析材料。此外,数据集的更新频率较高,确保了研究的前沿性和时效性。
使用方法
研究者可以通过访问`data_sources.xlsx`文件获取原始数据,并根据研究需求进行进一步的分析和处理。数据集支持多种心理健康问题的研究,如抑郁症、自杀倾向等。研究者还可以利用提供的标准化标注工具对新文献进行标注,以扩展数据集的内容和应用范围。
背景与挑战
背景概述
心理健康数据集(Mental Health Datasets)是由Keith Harrigian、Carlos Aguirre和Mark Dredze等研究人员在约翰霍普金斯大学主导创建的,旨在通过社交媒体数据模型化心理健康现象。该数据集的核心研究问题集中在利用电子和社交媒体数据进行心理健康状态的建模与分析,特别是对抑郁症、自杀倾向等心理健康问题的检测。自2021年以来,该数据集已成为自然语言处理(NLP)与心理健康交叉领域的重要资源,为研究人员提供了丰富的数据来源,推动了心理健康领域的研究进展。
当前挑战
心理健康数据集在构建和应用过程中面临多重挑战。首先,数据隐私和用户权利保护是核心问题,特别是在处理社交媒体数据时,如何确保用户隐私不受侵犯是一个重大挑战。其次,心理健康状态的复杂性和多样性使得数据标注和分类变得极为困难,尤其是在多模态信息(如文本、图像等)的结合分析中。此外,社交媒体数据的动态性和噪声特性也为模型的准确性和鲁棒性带来了挑战。最后,跨平台数据的整合与标准化处理也是该领域面临的一个重要难题。
常用场景
经典使用场景
在心理健康领域,Mental Health Datasets数据集的经典使用场景主要集中在通过社交媒体和电子平台的数据来推断用户的心理健康状态。例如,研究人员可以利用该数据集分析用户在社交平台上的发帖内容、语言模式和情感表达,从而识别出潜在的心理健康问题,如抑郁症、自杀倾向等。这种基于多模态信息的心理健康状态推断,为心理健康研究提供了新的视角和工具。
衍生相关工作
基于Mental Health Datasets数据集,衍生出了许多经典的研究工作。例如,有研究利用该数据集开发了多任务学习模型,用于同时检测多种心理健康问题;还有研究通过分析社交媒体文本中的语言特征,提出了新的心理健康状态预测方法。这些衍生工作不仅丰富了心理健康研究的理论框架,还为实际应用提供了技术支持,推动了心理健康领域的技术进步。
数据集最近研究
最新研究方向
近年来,心理健康数据集在社交媒體和电子数据中的应用成为研究热点,尤其是在自然语言处理(NLP)与心理健康交叉领域的研究中。研究者们致力于从多模态信息中推断用户的心理健康状态,如通过社交媒体帖子、图片和搜索数据等。这些研究不仅关注抑郁症、自杀倾向等常见心理健康问题,还扩展到创伤后应激障碍(PTSD)、饮食失调等更为复杂的领域。此外,随着BERT等深度学习模型的引入,研究者们能够更精确地预测和识别心理健康风险,推动了心理健康监测和干预技术的发展。这些研究不仅在学术界引起了广泛关注,也在实际应用中展现了巨大的潜力,为心理健康领域的早期干预和个性化治疗提供了新的可能性。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录