five

ted-parallel-corpus-Chinese-English|平行语料库数据集|机器翻译数据集

收藏
github2022-02-11 更新2024-05-31 收录
平行语料库
机器翻译
下载链接:
https://github.com/foreyes/ted-parallel-corpus-Chinese-English
下载链接
链接失效反馈
资源简介:
一个包含TED演讲文本的平行语料库,包括经过分词的中英文文本、词汇表以及处理程序。数据集提供了高质量的10M中英文文本数据,以及详细的中英文词汇表,适用于语言研究和机器翻译等领域。

A parallel corpus containing TED talk texts, including tokenized Chinese and English texts, vocabulary lists, and processing programs. The dataset provides high-quality 10M Chinese-English text data, along with detailed Chinese-English vocabulary lists, suitable for language research and machine translation, among other fields.
创建时间:
2019-12-20
原始信息汇总

数据集概述

数据集名称

ted-parallel-corpus-Chinese-English

数据集描述

本数据集包含从TED演讲转录的平行语料库,涵盖中文和英文两种语言。

数据集内容

  • 英文文本:经过分词处理的高质量文本数据,总量为10M。
  • 中文文本:使用jieba分词工具处理的高质量文本数据,总量为10M。
  • 词汇表:包含43,000个英文词汇和62,000个中文词汇。
  • 处理程序:使用Python编写的Spider和处理程序,目前尚未添加注释。

数据示例

  • 英文词汇表:包含特殊符号如<unk><s></s>及常用词汇如autotrophmonochromatic等。
  • 中文词汇表:包含特殊符号如<unk><s></s>及常用词汇如“修理铺”、“随机存取”等。
  • 英文文本示例:展示了一段英文演讲文本,如“Well you can see where this is going.”等。
  • 中文文本示例:对应的中文翻译,如“你可以猜到事情是怎么发展的。”等。

数据特点

  • 中英文文本对应行内容一致,适合进行语言学习、翻译研究等。
AI搜集汇总
数据集介绍
main_image_url
构建方式
ted-parallel-corpus-Chinese-English数据集的构建基于TED演讲的转录文本,通过精心处理形成高质量的中英双语文本对。英文文本经过分词处理,中文文本则通过jieba分词工具进行处理,确保了文本的准确性和一致性。此外,数据集还包含了中英词汇表,分别涵盖43,000个英文词汇和62,000个中文词汇,为语言研究提供了丰富的词汇资源。构建过程中,还提供了用于数据爬取和处理的Python程序,尽管这些程序尚未添加注释,但为数据集的自动化处理提供了技术支持。
使用方法
使用ted-parallel-corpus-Chinese-English数据集时,用户可以直接利用其中的中英双语文本进行机器翻译模型的训练和测试,或者用于语言对比分析。词汇表部分可以作为语言模型的预训练数据,提升模型的词汇覆盖率和准确性。此外,数据集附带的Python程序可以作为参考,帮助用户实现数据的自动化处理和分析。在使用过程中,用户应注意文本的对应关系,以确保翻译或分析的准确性。
背景与挑战
背景概述
随着全球化进程的加速,跨语言交流的需求日益增长,尤其是在学术、商业和文化领域。ted-parallel-corpus-Chinese-English数据集应运而生,旨在为中英双语翻译研究提供高质量的平行语料库。该数据集由TED演讲的转录文本构建,包含了经过分词处理的1000万字高质量中英双语文本,以及43,000个英文词汇和62,000个中文词汇的词汇表。这一数据集的创建不仅为机器翻译、自然语言处理等领域的研究提供了宝贵的资源,还为跨语言信息检索和语言学习等应用奠定了基础。
当前挑战
尽管ted-parallel-corpus-Chinese-English数据集在双语翻译研究中具有重要价值,但其构建过程中仍面临诸多挑战。首先,确保中英双语文本的准确对应是关键难题,尤其是在处理口语化表达和文化特定词汇时。其次,数据集的规模和质量要求对分词和词汇表的构建提出了高要求,如何平衡词汇覆盖率和数据处理效率是一个持续的挑战。此外,数据集的开放性和可扩展性也需要进一步优化,以适应不断变化的研究需求和技术进步。
常用场景
经典使用场景
在自然语言处理领域,ted-parallel-corpus-Chinese-English数据集因其高质量的中英双语文本而备受瞩目。该数据集特别适用于机器翻译、跨语言信息检索以及双语词嵌入模型的训练。通过提供经过分词处理的中英文对照文本,研究者能够构建和优化翻译模型,提升翻译的准确性和流畅度。此外,该数据集还可用于语言模型预训练,增强模型对中英文语言结构的理解能力。
解决学术问题
ted-parallel-corpus-Chinese-English数据集在解决机器翻译中的对齐问题方面具有显著贡献。通过提供精确的中英对照文本,该数据集帮助研究者克服了双语语料库中常见的对齐不准确问题,从而提升了翻译模型的性能。此外,该数据集还为跨语言词汇表征研究提供了丰富的资源,有助于深入理解中英文词汇的语义对应关系,推动了跨语言自然语言处理技术的发展。
实际应用
在实际应用中,ted-parallel-corpus-Chinese-English数据集被广泛应用于在线翻译服务、多语言客户支持系统以及跨语言内容推荐系统。通过利用该数据集训练的翻译模型,企业能够提供更准确、更自然的翻译服务,提升用户体验。同时,该数据集还支持多语言文本分析工具的开发,帮助企业更好地理解和利用全球化的文本数据,增强市场竞争力。
数据集最近研究
最新研究方向
在自然语言处理领域,ted-parallel-corpus-Chinese-English数据集因其高质量的中英双语文本而备受关注。该数据集不仅提供了经过分词处理的中英文文本,还包含了丰富的词汇表,为机器翻译、跨语言信息检索以及多语言文本分析等前沿研究提供了坚实的基础。近年来,随着神经机器翻译技术的快速发展,该数据集被广泛应用于构建和优化翻译模型,尤其是在提升低资源语言翻译质量方面展现出显著潜力。此外,该数据集的开放性也为跨文化交流研究提供了新的视角,推动了语言学与计算机科学的交叉融合,进一步拓宽了语言技术的应用边界。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录

glaive-function-calling-openai

该数据集包含用于训练和评估语言模型在函数调用能力上的对话示例。数据集包括一个完整的函数调用示例集合和一个精选的子集,专注于最常用的函数。数据集的结构包括一个完整的数据集和几个测试子集。每个记录都是一个JSON对象,包含对话消息、可用函数定义和实际的函数调用。数据集还包括最常用的函数分布信息,并提供了加载和评估数据集的示例代码。

huggingface 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录