Lepidoptera Genome Consortium|基因组研究数据集|昆虫学数据集
收藏
- Lepidoptera Genome Consortium首次发表,标志着鳞翅目昆虫基因组研究的正式启动。
- 首次应用Lepidoptera Genome Consortium数据集于科学研究,揭示了多种鳞翅目昆虫的基因组特征。
- Lepidoptera Genome Consortium数据集被广泛应用于生态学和进化生物学研究,成为该领域的重要资源。
- Lepidoptera Genome Consortium发布了更新版本,增加了更多鳞翅目昆虫的基因组数据,提升了数据集的全面性和准确性。
- Lepidoptera Genome Consortium数据集在农业害虫防治和生物多样性保护方面的应用取得显著成果,进一步巩固了其在科学研究中的地位。
- 1The genome of the leaf beetle Chrysomela populi provides insight into light-mediated damage-induced plant volatilesLepidoptera Genome Consortium · 2017年
- 2The genome of the leaf beetle Chrysomela populi provides insight into light-mediated damage-induced plant volatilesLepidoptera Genome Consortium · 2017年
- 3The genome of the leaf beetle Chrysomela populi provides insight into light-mediated damage-induced plant volatilesLepidoptera Genome Consortium · 2017年
- 4The genome of the leaf beetle Chrysomela populi provides insight into light-mediated damage-induced plant volatilesLepidoptera Genome Consortium · 2017年
- 5The genome of the leaf beetle Chrysomela populi provides insight into light-mediated damage-induced plant volatilesLepidoptera Genome Consortium · 2017年
Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。
国家青藏高原科学数据中心 收录
安徽新能源汽车产业链图谱企业名单数据
根据安徽新能源产业链上下游特点。将安徽新能源产业分为发、储、送、 运共计95个产业链节点。依托佰腾专利大数据资源,将涉及节点的企业进行分类上链,产业链节点上显示的是涉及节点产品的所有企业的详情,通过产业链图谱企业数据集可以精准把握产业链上下游产品节点及链主、伙伴角色,深度挖掘产业链中企业、高校、专家、专利的关联关系,精准匹配产业链产品�
安徽省数据知识产权登记平台 收录
UIEB, U45, LSUI
本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。
github 收录