five

best_movie_adaptations|文学改编数据集|影视分析数据集

收藏
huggingface2024-11-27 更新2024-12-12 收录
文学改编
影视分析
下载链接:
https://huggingface.co/datasets/reinashi/best_movie_adaptations
下载链接
链接失效反馈
资源简介:
该数据集探讨了文学作品与其电影/电视改编之间的关系,重点关注改编如何影响原始作品的接受和欣赏。数据集包含有关被改编成电影或电视节目的书籍的信息,包括它们的评分、受欢迎度指标和来自Goodreads的观众参与数据。数据集的主要字段包括书籍的名称、作者、Goodreads上的平均评分、评分数量、Goodreads列表分数和改编列表的投票数量。数据集包含434本书及其改编作品,涵盖了各种类型和时间段,提供了足够的统计能力进行相关性和比较分析。数据集还考虑了伦理问题,如数据收集、隐私和偏见,并提供了使用指南。
创建时间:
2024-11-27
原始信息汇总

书籍改编电影/电视剧影响数据集

概述

该数据集探讨了文学作品与其电影/电视剧改编之间的关系,重点关注改编如何影响原作的接受度和欣赏度。数据集包含被改编成电影或电视剧的书籍信息,包括其在Goodreads上的评分、受欢迎度指标和观众参与数据。

数据来源

数据收集代码仓库:https://github.com/SSSSShi/Movie-Adaptations-Dataset

动机

电影和电视行业对IP改编的关注日益增加,需要了解这些改编如何影响原作。该数据集旨在提供以下方面的见解:

  • 书籍受欢迎度与改编成功之间的关系
  • 成功改编文学作品的特征

潜在应用

  • 分析改编成功因素
  • 预测潜在成功改编候选作品
  • 理解观众接受模式
  • 出版商和制片人的战略决策
  • IP估值和营销策略开发

数据描述

数据集包含以下主要字段:

  • Name:书籍标题
  • Author:书籍作者
  • Avg Rating:Goodreads上的平均评分(0-5分制)
  • Rating Count:收到的评分数量
  • Score:Goodreads列表评分
  • Vote Count:改编列表中收到的投票数量

数据统计

  • 书籍总数:434本
  • 大多数书籍评分范围:3.57 - 4.39星
  • 平均评分:3.99

先前数据集回顾

现有数据集包括:

  1. IMDb Datasets
    • 包含基本电影信息
    • 缺乏与原作的直接联系
    • 无书籍特定指标
  2. Goodreads Datasets
    • 仅关注书籍指标
    • 无改编信息
    • 仅限于阅读指标
  3. MovieLens
    • 电影评分和元数据
    • 无书籍改编信息
    • 仅限于观众偏好

本数据集的新颖之处在于:

  • 结合了书籍和改编指标
  • 支持直接分析改编影响

功效分析

数据集包含434本与其改编作品相关的书籍,涵盖各种类型和时间段。该样本量足以进行以下分析:

  • 评分与受欢迎度指标之间的相关性分析
  • 改编前后接受度的比较分析

探索性数据分析

关键发现:

  1. 评分分布
    • 平均评分呈负偏态分布
    • 大多数书籍评分在3.57至4.39星之间
  2. 受欢迎度指标
    • 评分数量与评分之间存在强相关性(r = [相关系数])
    • 评分最高的书籍往往有更高的投票数量
  3. 最受欢迎的改编
    • 按评分排序的顶级书籍:
      1. 哈利·波特与死亡圣器(哈利·波特,#7),J.K.罗琳(评分:4.62)
      2. 哈利·波特与阿兹卡班的囚徒(哈利·波特,#3),J.K.罗琳(评分:4.58)
      3. 哈利·波特与混血王子(哈利·波特,#6),J.K.罗琳(评分:4.58)
    • 按受欢迎度(评分数量)排序的顶级书籍:
      1. 哈利·波特与魔法石(哈利·波特,#1),J.K.罗琳(10,508,696评分)
      2. 饥饿游戏(饥饿游戏,#1),苏珊·柯林斯(9,043,765评分)
      3. 暮光之城,斯蒂芬妮·梅尔(6,825,359评分)

代码仓库

数据收集和分析代码可在[GitHub仓库链接]中找到。仓库包括:

  • Goodreads数据收集的网页抓取脚本
  • 数据清洗和预处理脚本
  • 探索性数据分析和可视化

伦理声明

该数据集在收集时已仔细考虑了伦理影响:

  1. 数据收集:所有数据均通过公共API和网页抓取收集,符合Goodreads的服务条款。
  2. 隐私:仅包含公开信息。
  3. 偏见考虑
    • 语言偏见:数据集主要包含英语书籍
    • 平台偏见:数据限于Goodreads用户群体
  4. 使用指南:使用此数据集时应意识到这些限制和偏见。

许可证

该数据集在MIT许可证下发布。

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集通过整合Goodreads平台上的公开数据,构建了一个关于书籍及其影视改编作品之间关系的数据库。数据收集过程包括使用网络爬虫技术从Goodreads获取书籍的评分、受欢迎度指标以及观众参与度数据。数据集涵盖了434本书籍,每本书均包含书名、作者、平均评分、评分数量、列表得分和改编作品的投票数量等关键字段。数据清洗和预处理步骤确保了数据的准确性和一致性,为后续分析提供了坚实的基础。
特点
该数据集的特点在于其独特的跨领域整合能力,将书籍的文学指标与影视改编的观众反馈相结合。数据集不仅包含了书籍的平均评分和评分数量,还提供了改编作品的受欢迎度指标,如列表得分和投票数量。这种多维度的数据整合使得研究者能够深入分析书籍与改编作品之间的关联性,探索改编对原著接受度的影响。此外,数据集涵盖了多种类型和不同时期的书籍,为广泛的学术研究和商业应用提供了丰富的数据支持。
使用方法
该数据集的使用方法多样,适用于多种研究场景。研究者可以利用数据集进行书籍与改编作品之间的相关性分析,探索改编成功的关键因素。此外,数据集还可用于预测潜在的改编成功候选作品,帮助出版商和制片人制定战略决策。通过分析观众接受模式,数据集为IP估值和市场营销策略的制定提供了数据支持。数据集的代码库中提供了数据收集、清洗和探索性分析的脚本,方便用户进行自定义分析和可视化。
背景与挑战
背景概述
在电影与电视产业日益关注IP改编的背景下,best_movie_adaptations数据集应运而生,旨在探讨文学作品与其影视改编之间的关系。该数据集由Reina Shi于2024年创建,收录了434部被改编为电影或电视剧的书籍信息,包括书籍的评分、受欢迎度指标以及来自Goodreads的观众参与数据。通过结合书籍与改编作品的指标,该数据集为分析改编对原著的影响提供了独特视角,填补了现有数据集如IMDb、Goodreads和MovieLens在书籍与改编作品关联性分析上的空白。该数据集不仅为出版商和制片人提供了战略决策支持,还为IP估值和市场营销策略的开发提供了数据基础。
当前挑战
best_movie_adaptations数据集在解决书籍与影视改编关系的研究中面临多重挑战。首先,如何准确衡量改编作品对原著的影响是一个复杂问题,涉及观众接受度、市场表现等多维度指标。其次,数据集的构建过程中,如何确保数据的全面性与代表性也是一大挑战,尤其是考虑到Goodreads用户群体的语言和平台偏差。此外,数据采集与清洗过程中,如何在不违反Goodreads服务条款的前提下,高效获取和处理大量公开数据,也对研究团队提出了较高的技术要求。这些挑战不仅影响了数据集的构建质量,也对其在相关领域的应用提出了更高的要求。
常用场景
经典使用场景
在文学与影视交叉研究领域,best_movie_adaptations数据集被广泛应用于分析书籍与其影视改编之间的关系。研究者通过该数据集探讨改编作品如何影响原著的接受度和评价,进而揭示文学与影视之间的互动机制。数据集中的书籍评分、受欢迎度指标以及观众参与数据为研究者提供了丰富的分析素材,使得他们能够深入挖掘改编作品的成功因素及其对原著的影响。
解决学术问题
best_movie_adaptations数据集解决了文学与影视改编研究中的多个关键问题。首先,它填补了现有数据集中缺乏书籍与改编作品直接关联的空白,使得研究者能够进行跨媒介的对比分析。其次,数据集提供了详细的评分和受欢迎度指标,帮助研究者量化改编作品对原著的影响,并揭示成功改编的特征。此外,数据集还为出版商和制片人提供了战略决策的依据,帮助他们识别潜在的改编候选作品。
衍生相关工作
基于best_movie_adaptations数据集,研究者们开展了多项经典工作。例如,有研究通过分析数据集中的评分和受欢迎度指标,提出了改编作品成功的关键因素模型。另一项研究则利用数据集中的观众参与数据,探讨了改编作品对原著读者群体的影响。此外,还有研究结合机器学习技术,开发了预测改编作品成功率的算法,为影视行业提供了决策支持工具。这些衍生工作不仅丰富了文学与影视改编研究的内容,也为相关行业提供了实用的解决方案。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录