茂名市政务服务专题互联网监管风险预警表信息|政务服务数据集|互联网监管数据集
收藏Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
aqcat25
<h1 align="center" style="font-size: 36px;"> <span style="color: #FFD700;">AQCat25 Dataset:</span> Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis </h1>  This repository contains the **AQCat25 dataset**. AQCat25-EV2 models can be accessed [here](https://huggingface.co/SandboxAQ/aqcat25-ev2). The AQCat25 dataset provides a large and diverse collection of **13.5 million** DFT calculation trajectories, encompassing approximately 5K materials and 47K intermediate-catalyst systems. It is designed to complement existing large-scale datasets by providing calculations at **higher fidelity** and including critical **spin-polarized** systems, which are essential for accurately modeling many industrially relevant catalysts. Please see our [website](https://www.sandboxaq.com/aqcat25) and [paper](https://cdn.prod.website-files.com/622a3cfaa89636b753810f04/68ffc1e7c907b6088573ba8c_AQCat25.pdf) for more details about the impact of the dataset and [models](https://huggingface.co/SandboxAQ/aqcat25-ev2). ## 1. AQCat25 Dataset Details This repository uses a hybrid approach, providing lightweight, queryable Parquet files for each split alongside compressed archives (`.tar.gz`) of the raw ASE database files. More details can be found below. ### Queryable Metadata (Parquet Files) A set of Parquet files provides a "table of contents" for the dataset. They can be loaded directly with the `datasets` library for fast browsing and filtering. Each file contains the following columns: | Column Name | Data Type | Description | Example | | :--- | :--- | :--- | :--- | | `frame_id` | string | **Unique ID for this dataset**. Formatted as `database_name::index`. | `data.0015.aselmdb::42` | | `adsorption_energy`| float | **Key Target**. The calculated adsorption energy in eV. | -1.542 | | `total_energy` | float | The raw total energy of the adslab system from DFT (in eV). | -567.123 | | `fmax` | float | The maximum force magnitude on any single atom in eV/Å. | 0.028 | | `is_spin_off` | boolean | `True` if the system is non-magnetic (VASP ISPIN=1). | `false` | | `mag` | float | The total magnetization of the system (µB). | 32.619 | | `slab_id` | string | Identifier for the clean slab structure. | `mp-1216478_001_2_False` | | `adsorbate` | string | SMILES or chemical formula of the adsorbate. | `*NH2N(CH3)2` | | `is_rerun` | boolean | `True` if the calculation is a continuation. | `false` | | `is_md` | boolean | `True` if the frame is from a molecular dynamics run. | `false` | | `sid` | string | The original system ID from the source data. | `vadslabboth_82` | | `fid` | integer | The original frame index (step number) from the source VASP calculation. | 0 | --- #### Understanding `frame_id` and `fid` | Field | Purpose | Example | | :--- | :--- | :--- | | `fid` | **Original Frame Index**: This is the step number from the original VASP relaxation (`ionic_steps`). It tells you where the frame came from in its source simulation. | `4` (the 5th frame of a specific VASP run) | | `frame_id` | **Unique Dataset Pointer**: This is a new ID created for this specific dataset. It tells you exactly which file (`data.0015.aselmdb`) and which row (`101`) to look in to find the full atomic structure. | `data.0015.aselmdb::101` | --- ## Downloadable Data Archives The full, raw data for each split is available for download in compressed `.tar.gz` archives. The table below provides direct download links. The queryable Parquet files for each split can be loaded directly using the `datasets` library as shown in the "Example Usage" section. The data currently available for download (totaling ~11.1M frames, as listed in the table below) is the initial dataset version (v1.0) released on September 10, 2025. The 13.5M frame count mentioned in our paper and the introduction includes additional data used to rebalance non-magnetic element systems and add a low-fidelity spin-on dataset. These new data splits will be added to this repository soon. | Split Name | Structures | Archive Size | Download Link | | :--- | :--- | :--- | :--- | | ***In-Domain (ID)*** | | | | | Train | `7,386,750` | `23.8 GB` | [`train_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/train_id.tar.gz) | | Validation | `254,498` | `825 MB` | [`val_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_id.tar.gz) | | Test | `260,647` | `850 MB` | [`test_id.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_id.tar.gz) | | Slabs | `898,530` | `2.56 GB` | [`id_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/id_slabs.tar.gz) | | ***Out-of-Distribution (OOD) Validation*** | | | | | OOD Ads (Val) | `577,368` | `1.74 GB` | [`val_ood_ads.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_ads.tar.gz) | | OOD Materials (Val) | `317,642` | `963 MB` | [`val_ood_mat.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_mat.tar.gz) | | OOD Both (Val) | `294,824` | `880 MB` | [`val_ood_both.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_both.tar.gz) | | OOD Slabs (Val) | `28,971` | `83 MB` | [`val_ood_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/val_ood_slabs.tar.gz) | | ***Out-of-Distribution (OOD) Test*** | | | | | OOD Ads (Test) | `346,738` | `1.05 GB` | [`test_ood_ads.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_ads.tar.gz) | | OOD Materials (Test) | `315,931` | `993 MB` | [`test_ood_mat.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_mat.tar.gz) | | OOD Both (Test) | `355,504` | `1.1 GB` | [`test_ood_both.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_both.tar.gz) | | OOD Slabs (Test) | `35,936` | `109 MB` | [`test_ood_slabs.tar.gz`](https://huggingface.co/datasets/SandboxAQ/aqcat25-dataset/resolve/main/test_ood_slabs.tar.gz) | --- ## 2. Dataset Usage Guide This guide outlines the recommended workflow for accessing and querying the AQCat25 dataset. ### 2.1 Initial Setup Before you begin, you need to install the necessary libraries and authenticate with Hugging Face. This is a one-time setup. ```bash pip install datasets pandas ase tqdm requests huggingface_hub ase-db-backends ``` **1. Create a Hugging Face Account:** If you don't have one, create an account at [huggingface.co](https://huggingface.co/join). **2. Create an Access Token:** Navigate to your **Settings -> Access Tokens** page or click [here](https://huggingface.co/settings/tokens). Create a new token with at least **`read`** permissions. Copy this token to your clipboard. **3. Log in via the Command Line:** Open your terminal and run the following command: ```bash hf auth login ``` ### 2.2 Get the Helper Scripts You may copy the scripts directly from this repository, or download them by running the following in your local python environment: ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="SandboxAQ/aqcat25", repo_type="dataset", allow_patterns=["scripts/*", "README.md"], local_dir="./aqcat25" ) ``` This will create a local folder named aqcat25 containing the scripts/ directory. ### 2.3 Download Desired Dataset Splits Data splits may be downloaded directly via the Hugging Face UI, or via the `download_split.py` script (found in `aqcat25/scripts/`). ```bash python aqcat25/scripts/download_split.py --split val_id ``` This will download `val_id.tar.gz` and extract it to a new folder named `aqcat_data/val_id/`. ### 2.4 Query the Dataset Use the `query_aqcat.py` script to filter the dataset and extract the specific atomic structures you need. It first queries the metadata on the Hub and then extracts the full structures from your locally downloaded files. **Example 1: Find all CO and OH structures in the test set:** ```bash python aqcat25/scripts/query_aqcat.py \ --split test_id \ --adsorbates "*CO" "*OH" \ --data-root ./aqcat_data/test_id ``` **Example 2: Find structures on metal slabs with low adsorption energy:** ```bash python aqcat25/scripts/query_aqcat.py \ --split val_ood_both \ --max-energy -2.0 \ --material-type nonmetal \ --magnetism magnetic \ --data-root ./aqcat_data/val_ood_both \ --output-file low_energy_metals.extxyz ``` **Example 3: Find CO on slabs containing both Ni AND Se with adsorption energy between -2.5 and -1.5 eV with a miller index of 011** ```bash python aqcat25/scripts/query_aqcat.py \ --split val_ood_ads \ --adsorbates "*COCH2OH" \ --min-energy -2.5 \ --max-energy -1.5 \ --contains-elements "Ni" "Se" \ --element-filter-mode all \ --facet 011 \ --data-root ./aqcat_data/val_ood_ads \ --output-file COCH2OH_on_ni_and_se.extxyz ``` --- ## 3. How to Cite If you use the AQCat25 dataset or the models in your research, please cite the following paper: ``` Omar Allam, Brook Wander, & Aayush R. Singh. (2025). AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis. arXiv preprint arXiv:XXXX.XXXXX. ``` ### BibTeX Entry ```bibtex @article{allam2025aqcat25, title={{AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis}}, author={Allam, Omar and Wander, Brook and Singh, Aayush R}, journal={arXiv preprint arXiv:2510.22938}, year={2025}, eprint={2510.22938}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci} } ```
魔搭社区 收录
TeleSpeechPT
TeleSpeechPT数据集包含约30万小时的方言和口音语音数据,用于训练无监督模型,以及包含4万小时的监督数据集。该数据集旨在解决中国方言和口音的语音识别问题,通过结合自监督学习和大型语言模型(LLM)来提升语音识别性能。数据集内容涵盖多个方言和口音,包括安徽、甘肃、河北、山东、山西、天津、广东、河南、四川、重庆、东北、陕西、湖北、福建、贵州、杭州、湖南、江西、上海、苏州、云南和客家等。数据集创建过程涉及对大量语音数据的收集和预处理,以及使用自监督学习方法进行模型训练。该数据集可应用于语音识别、语音合成和语音增强等领域,旨在解决方言和口音语音识别的挑战。
arXiv 收录
DIV2K
displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}
魔搭社区 收录
