five

Semantic Drone Dataset|无人机数据集|语义分析数据集

收藏
github2024-06-20 更新2024-06-21 收录
无人机
语义分析
下载链接:
https://github.com/Angel3245/pix2pix_image-generation
下载链接
链接失效反馈
资源简介:
该数据集专注于城市场景的语义理解,用于提高自主无人机飞行和着陆过程的安全性。数据集包含超过20个房屋的鸟瞰图,图像大小为400x600,由高分辨率相机在5至30米的高度拍摄。

This dataset focuses on the semantic understanding of urban scenes, aimed at enhancing the safety of autonomous drone navigation and landing processes. It comprises over 20 aerial views of houses, with image dimensions of 400x600 pixels, captured by high-resolution cameras at altitudes ranging from 5 to 30 meters.
创建时间:
2024-06-20
原始信息汇总

数据集描述

  • 名称: Semantic Drone Dataset (TU-Graz)
  • 来源: Semantic Drone Dataset
  • 用途: 用于训练和评估图像到图像翻译模型,专注于城市场景的语义理解,以提高自主无人机飞行和着陆过程的安全性。
  • 特点:
    • 包含超过20栋房屋的鸟瞰图。
    • 图像采集高度为5至30米。
    • 使用高分辨率相机,图像尺寸为400x600。

评估指标

  • PSNR: 峰值信噪比,用于衡量生成图像与真实图像的质量,PSNR值越高,图像质量越好。
  • SSIM: 结构相似性指数,用于衡量生成图像与真实图像的相似性,考虑结构信息、亮度和对比度的变化。
  • Cosine Similarity: 余弦相似度,通过计算两个图像特征向量之间的余弦角来衡量图像相似性,相似度越高,图像越相似。
  • FCN-Score: 使用全卷积网络评估生成图像的分割性能,FCN-Score越高,分割质量越好。
  • Qualitative Analysis: 定性分析,通过视觉检查生成图像的逼真度,包括与真实图像的并排比较和人类观察者的评估。
AI搜集汇总
数据集介绍
main_image_url
构建方式
在构建Semantic Drone Dataset时,研究团队采用了高分辨率相机,从无人机在5至30米高空拍摄的视角,捕捉了超过20栋房屋的鸟瞰图像。这些图像以400x600的分辨率记录,旨在为城市场景的语义理解提供丰富的视觉数据,从而提升自主无人机飞行和着陆过程的安全性。
特点
Semantic Drone Dataset的显著特点在于其高分辨率和特定视角的图像采集,这使得数据集在城市环境中的语义分析方面具有极高的应用价值。此外,该数据集还包含了多种量化评估指标(如PSNR、SSIM、Cosine Similarity和FCN-Score),这些指标为模型的性能评估提供了全面的参考。
使用方法
使用Semantic Drone Dataset时,用户首先需导航至项目目录并创建一个conda环境。随后,通过加载和预处理图像数据,用户可以训练Pix2Pix模型中的生成器和判别器,利用对抗损失和重构损失优化模型。训练过程中,模型会定期保存检查点以供后续评估。最终,通过PSNR、SSIM、Cosine Similarity和FCN-Score等指标,用户可以对生成的图像进行量化评估,并通过视觉检查进行定性分析。
背景与挑战
背景概述
Semantic Drone Dataset,由TU-Graz机构创建,专注于城市场景的语义理解,旨在提升无人机的自主飞行和着陆安全性。该数据集包含超过20栋房屋的鸟瞰图像,采集高度为5至30米,图像分辨率为400x600。其核心研究问题在于通过高分辨率图像实现对城市环境的精确语义分割,从而为无人机导航提供可靠数据支持。此数据集对无人机技术领域的影响深远,特别是在提升飞行安全性和环境感知能力方面。
当前挑战
Semantic Drone Dataset在构建过程中面临的主要挑战包括高分辨率图像的采集与处理,以及确保数据集的多样性和代表性。此外,该数据集在应用中的挑战在于如何有效地将图像转换为语义信息,以支持无人机的自主决策。具体挑战包括:1) 图像到图像转换模型的训练,需平衡生成图像的逼真度与语义准确性;2) 评估指标的选择,如PSNR、SSIM、Cosine Similarity和FCN-Score,需确保这些指标能全面反映模型的性能;3) 数据集的更新与扩展,以适应不断变化的城市环境和无人机技术的发展。
常用场景
经典使用场景
在无人机自主飞行与着陆过程中,Semantic Drone Dataset 被广泛应用于图像到图像的翻译任务。通过Pix2Pix模型,该数据集能够将输入的无人机视角图像转换为高分辨率的现实图像,从而提升无人机在复杂城市环境中的导航与着陆安全性。这一应用场景不仅优化了无人机的视觉感知能力,还为后续的图像处理与分析提供了坚实的基础。
衍生相关工作
基于Semantic Drone Dataset,研究者们开发了多种图像翻译与语义分割模型,如Pix2Pix、CycleGAN等,这些模型在无人机视觉感知与导航领域取得了显著成果。此外,该数据集还激发了大量关于无人机自主飞行与着陆的研究,推动了计算机视觉与机器人技术的交叉融合。这些衍生工作不仅丰富了学术研究的内容,还为无人机技术的实际应用提供了新的思路和方法。
数据集最近研究
最新研究方向
在无人机自主飞行与着陆安全领域,Semantic Drone Dataset的最新研究方向主要集中在图像到图像翻译技术的应用上。通过Pix2Pix模型,研究者们致力于将输入图像转换为高度逼真的输出图像,以提升无人机在复杂城市环境中的导航与着陆精度。这一研究不仅推动了图像处理技术的边界,还为无人机在实际应用中的安全性提供了新的保障。此外,该数据集的量化评估指标如PSNR、SSIM、Cosine Similarity和FCN-Score,以及定性分析方法,为模型的性能评估提供了全面而深入的视角,进一步促进了该领域的技术进步。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

海天瑞声-超大规模中文多领域高质量多轮对话语料库

这是一个符合中国人表达习惯的自然对话数据集,共计约1,0000,000轮,上亿级token,包含正式&非正式风格对话,使用偏口语化自然表达。覆盖工作、生活、校园等场景,及金融、教育、娱乐、体育、汽车、科技等领域。在数据集构成上,DOTS-NLP-216包含了对真实场景的对话采集,及高度还原真实场景的模拟对话这两种方式,兼顾分布的代表性、多样性和样本规模。

魔搭社区 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

中国省级灾害统计空间分布数据集(1999-2020年)

该数据集为中国省级灾害统计空间分布数据集,时间为1999-2020年。该数据集包含中国各省自然灾害、地质灾害、地震灾害、森林火灾、森林病虫鼠害、草原灾害六类灾害的详细数据。数据量为206MB,数据格式为excel。

国家地球系统科学数据中心 收录