five

objectnet|图像识别数据集|视觉系统评估数据集

收藏
魔搭社区2025-05-30 更新2025-01-11 收录
图像识别
视觉系统评估
下载链接:
https://modelscope.cn/datasets/timm/objectnet
下载链接
链接失效反馈
资源简介:
# ObjectNet A webp (lossless) encoded version of [ObjectNet-1.0](https://objectnet.dev/index.html) at original resolution. ## License / Usage Terms ObjectNet is free to use for both research and commercial applications. The authors own the source images and allow their use under a license derived from Creative Commons Attribution 4.0 with only two additional clauses. 1. **ObjectNet may never be used to tune the parameters of any model.** 2. **Any individual images from ObjectNet may only be posted to the web including their 1 pixel red border**. If you are using ObjectNet, please cite our work, the citation appears at the bottom of this page. Any derivative of ObjectNet must contain attribution as well. ## About What is ObjectNet? * A new kind of vision dataset borrowing the idea of controls from other areas of science. * No training set, only a test set! Put your vision system through its paces. * Collected to intentionally show objects from new viewpoints on new backgrounds. * 50,000 image test set, same as ImageNet, with controls for rotation, background, and viewpoint. * 313 object classes with 113 overlapping ImageNet * Large performance drop, what you can expect from vision systems in the real world! * Robust to fine-tuning and a very difficult transfer learning problem ## Why the Red Borders / How do I recognize if an image is in ObjectNet? As training sets become huge, the risk that test and training sets overlap is serious. We provide ObjectNet with a 2 pixel red border around each image which must be removed before performing inference. The ObjectNet license requires that if you post images from ObjectNet to the web, you include this border. Any time you see an image with a solid 2 pixel red border, that's an indication it's in someone's test set and you should be careful about training on it. Reverse image search will allow you to figure out which test set it is from. NOTE: original ObjectNet PNG files actually have a 2 pixel red border while their descriptions say 1. ## Preprocessing Steps for This timm Version 1. Re-encode PNG images with lossless WebP (~32% reduction in size), keeping red border. 2. Add `imagenet_labels` and `imagenet_synsets` consisting of lists of ImageNet-1k classes that overlap with ObjectNet class. ## Citation ```bibtex @incollection{NIPS2019_9142, title = {ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models}, author = {Barbu, Andrei and Mayo, David and Alverio, Julian and Luo, William and Wang, Christopher and Gutfreund, Dan and Tenenbaum, Josh and Katz, Boris}, booktitle = {Advances in Neural Information Processing Systems 32}, editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett}, pages = {9448--9458}, year = {2019}, publisher = {Curran Associates, Inc.}, url = {http://papers.nips.cc/paper/9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf} } ```
提供机构:
maas
创建时间:
2025-01-08
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Med-MAT

Med-MAT是一个包含106个开源医学数据集的视觉问答(VQA)数据集,旨在推动医学多模态大语言模型(MLLMs)的泛化实验和训练。数据集通过将图像-标签对转换为VQA格式,展示了组合泛化(CG)是MLLMs理解未见图像的关键机制。数据集包括106个医学数据集的问答对、53个按模态、解剖区域和任务(MAT)分类的子集的问答对,以及部分数据集的图像下载链接。

huggingface 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

人民日报语料库

该数据集包含2023年5月至2024年4月期间人民日报的全部文章,以JSON格式保存,每篇文章包含URL、标题和内容。

github 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录