five

AlpacaEval|自然语言处理数据集|模型评估数据集

收藏
OpenDataLab2025-03-29 更新2024-05-09 收录
自然语言处理
模型评估
下载链接:
https://opendatalab.org.cn/OpenDataLab/AlpacaEval
下载链接
链接失效反馈
资源简介:
Evaluation of instruction-following models (e.g., ChatGPT) typically requires human interactions. This is time-consuming, expensive, and hard to replicate. AlpacaEval in an LLM-based automatic evaluation that is fast, cheap, replicable, and validated against 20K human annotations. It is particularly useful for model development. Although we improved over prior automatic evaluation pipelines, there are still fundamental limitations like the preference for longer outputs. AlpacaEval provides the following: Leaderboard: a leaderboard of common models on the AlpacaEval evaluation set. Caution: Automatic evaluator (e.g. GPT4) may be biased towards models that generate longer outputs and/or that were fine-tuned on the model underlying the evaluator (e.g. GPT4). Automatic evaluator: an automatic evaluator that has high agreement with humans (validated on 20K annotations). We evaluate a model by measuring the fraction of times an powerful LLM (e.g. GPT 4 or Claude or ChatGPT) prefers the outputs from that model over outputs from a reference model. Our evaluators enable caching and output randomization by default. Toolkit for building automatic evaluators: a simple interface for building advanced automatic evaluators (e.g. with caching, batching, or multi-annotators) and analyzing them (quality, price, speed, statistical power, bias, variance etc). Human evaluation data: 20K human preferences between a given and reference model on the AlpacaFarm evaluation set. 2.5K of these are cross-annotations (4 humans annotating the same 650 examples). AlpacaEval dataset: a simplification of AlpacaFarm's evaluation set, where "instructions" and " inputs" are merged into one field, and reference outputs are longer. Details here.
提供机构:
OpenDataLab
创建时间:
2023-12-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Asteroids by the Minor Planet Center

包含所有已知小行星的轨道数据和观测数据。数据来源于Minor Planet Center,格式包括Fortran (.DAT)和JSON,数据集大小为81MB(压缩)和450MB(未压缩),记录数约750,000条,每日更新。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

Infrared Thermal Image Dataset of High Voltage Electrical Power Equipment under Different Operating Conditions

Recognizing high voltage power equipment in electrical substations is the fundamental platform for effective condition monitoring of electrical power system. It enables proper identification and analysis of anomalies within the equipment, especially when in operation. The result such investigation can be applied for effective real-time measurement, control and protection schemes in the network. The use of visual images for this purpose would be limited during poor lighting conditions. However, Infrared (IR) images of the equipment are invariant to poor illumination condition. Hence, we have acquired the thermographic images of the high voltage power equipment using the portable professional FLIR C5 Infrared camera at different times of the day and load conditions. The dataset contains 5 categories of high voltages equipment common to most air-insulated electrical power substation at 132kV level, namely: circuit breakers, power transformers, surge arresters, disconnectors, and wave traps. The number of IR images for each class of equipment are: circuit breakers 203, power transformers 178, surge arresters 181, disconnectors 180, and wave traps 153. The IR images are 640 x 480 pixel RGB images captured using the rainbow color palette and properly segmented in labeled folders. The color bar in each IR image identifies the thermal range used during its acquisition. The dataset can be used for implementing novel research in computer vision based deep learning models, especially in object recognition, identification, fault classification or detection algorithms. The thermal profile of the equipment in the dataset could be applied for detection of hotspots and other related anomalies.

DataCite Commons 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录