SUN RGB-D|计算机视觉数据集|机器学习数据集
收藏
- SUN RGB-D数据集首次发表,由Xiao等人提出,旨在提供一个包含RGB-D图像的大规模数据集,用于场景理解研究。
- SUN RGB-D数据集首次应用于深度学习模型训练,特别是在场景分类和物体检测任务中,展示了其在计算机视觉领域的潜力。
- 随着深度学习技术的进步,SUN RGB-D数据集被广泛用于开发和验证新的三维物体检测和场景解析算法。
- SUN RGB-D数据集开始被集成到多个开源计算机视觉框架中,促进了其在学术界和工业界的应用。
- 研究者们利用SUN RGB-D数据集进行多模态学习研究,探索如何更有效地融合RGB和深度信息以提升模型性能。
- SUN RGB-D数据集在自动驾驶和机器人导航等实际应用中得到了进一步验证,展示了其在实际场景中的应用价值。
- 随着数据集的不断扩展和更新,SUN RGB-D继续在推动场景理解和三维视觉研究方面发挥重要作用。
- 1SUN RGB-D: A RGB-D Scene Understanding Benchmark SuitePrinceton University · 2015年
- 23D Semantic Segmentation with Submanifold Sparse Convolutional NetworksStanford University · 2018年
- 3Learning to Segment Every ThingFacebook AI Research · 2018年
- 4DensePose: Dense Human Pose Estimation In The WildFacebook AI Research · 2018年
- 5Deep Hough Voting for 3D Object Detection in Point CloudsStanford University · 2019年
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
YOLO Drone Detection Dataset
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。
github 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
AISHELL/AISHELL-1
Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。
hugging_face 收录
RFUAV
RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。
arXiv 收录