Portrait of Alfred Barston, [s.d.]|历史人物数据集|肖像数据集
收藏PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
Awesome AIGC Image Detection
这是一个新的AIGC图像检测基准,包含六个数据集和十种检测方法。每个数据集都基于相应的代码运行,并提供了运行代码和环境以及结果日志。
github 收录
SD-saliency-900
SD-saliency-900是一个用于显著钢表面缺陷生成的数据集,包含图像和对应的掩码。
github 收录
SMSSpamCollection
该数据集包含数千条标记为spam或ham(非垃圾邮件)的短信。它反映了日常通信的典型情况,并包含常见的垃圾邮件词汇,为评估文本分类模型提供了现实基础。
github 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
