five

Small Glass Vial: EOA:2022.55

收藏
Mendeley Data2024-05-10 更新2024-06-28 收录
下载链接:
https://zenodo.org/records/10331019
下载链接
链接失效反馈
资源简介:
Glass vial from the wreck of the Earl Of Abergavenny. ID: EOA:2022.55 Collection: Earl of Abergavenny Classification: Trade Measurements: Diametre 23mm Height 91mm Date made: as yet unknown Display: not on display Manufacturer/Creator: as yet unknown Credit: Portland Museum Trust One of a collection of over 60 glass vials recovered unbroken from the wreck of the Earl of Abergavenny, this smaller type would have held medicine, dye or chemicals. For more information about the Diving into the Digital Archives of the Earl of Abergavenny project click here: portlandmuseum.co.uk/news Source: Objaverse 1.0 / Sketchfab
创建时间:
2024-01-08
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

维基百科(wiki2019zh)

维基百科json版包含104万个词条,可作为通用中文语料,用于预训练的语料或构建词向量,也可用于构建知识问答。

github 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

Vehicle Energy Dataset (VED)

Vehicle Energy Dataset (VED)是由密歇根大学创建的一个大规模数据集,包含从2017年11月至2018年11月期间,在美国密歇根州安娜堡收集的383辆个人汽车的燃油和能量数据。该数据集捕捉了车辆的GPS轨迹以及燃油、能量、速度和辅助电源使用的时间序列数据。数据集中的车辆类型多样,包括264辆汽油车、92辆混合动力车和27辆插电式混合动力/电动车。VED数据集总里程约374,000英里,涵盖了从高速公路到交通密集的市中心区域等各种驾驶条件和季节。数据集创建过程中,研究团队通过安装在车辆上的OBD-II记录器收集数据,并对个人身份信息进行了去标识化处理,以保护参与者隐私。VED数据集的应用领域广泛,包括车辆能源消耗建模、驾驶员行为建模、机器学习和深度学习、交通模拟器的校准、最佳路线选择模型、人类驾驶员行为预测以及自动驾驶汽车的决策制定等。

arXiv 收录