five

Lagrangian transformation of sweeping jet

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/mysg2t6gbn
下载链接
链接失效反馈
资源简介:
This dataset contains the original data, the code and the results of the runs. Raw data (*.dat file): obtained from ANSYS Fluent simulations, converted to ASCII format with appropriate processing. Code (*.m file): MATLAB program, which needs to be run under the same folder as the *.dat file. Results (*.dat and *.gif files): the results obtained by running the above code, and the animation files created by Tecplot after plotting.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PRBench

PRBench是一个大规模专家标注的专业领域高风险推理基准测试数据集,当前版本覆盖法律和金融领域。包含1,100个专家编写的跨金融和法律领域的对话,19,356个专家策划的评估标准(每个任务10-30条),覆盖114个国家、47个美国司法管辖区和25个专业主题,并包含最具挑战性任务的硬子集(Finance-300, Legal-250)。

github 收录

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

O*NET

O*NET(Occupational Information Network)是一个综合性的职业信息数据库,提供了关于各种职业的详细描述,包括技能要求、工作活动、知识领域、工作环境等。该数据集被广泛用于职业分析、教育和劳动力市场研究。

www.onetonline.org 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

MNIST数据集

‌数据规模‌ ‌训练集‌:60,000 张手写数字图像(28×28 像素灰度图)及对应标签 34。 ‌测试集‌:10,000 张图像与标签,用于模型评估 68。 ‌数据来源‌ 由美国国家标准与技术研究院(NIST)收集,50% 样本来自高中生手写,50% 来自人口普查局工作人员 48。 经 Yann LeCun 团队标准化处理,成为机器学习基准数据集 1011。

阿里云天池 收录