five

Preparation of cross-linked magnetic chitosan particles from steel slag and shrimp shells for removal of heavy metals

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
下载链接:
https://tandf.figshare.com/articles/dataset/Preparation_of_cross-linked_magnetic_chitosan_particles_from_steel_slag_and_shrimp_shells_for_removal_of_heavy_metals/5106871/1
下载链接
链接失效反馈
资源简介:
In this study, a new method for preparation of cross-linked magnetic chitosan particles (MCPs) from steel slag and shrimp shells using green tea extract as crosslinking reagent has been presented. The MCPs obtained were characterized by means of X-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy and magnetic properties, and then were used to investigate the adsorption properties of Cu(II) and Ni(II) ions in aqueous solutions. The influence of experimental conditions such as contact time, pH value, adsorbent dose and initial metal concentration, and the possibility of regeneration were studied systematically. The Cu(II) and Ni(II) adsorption isotherms, kinetics and thermodynamics have been measured and discussed. The results show that the synthesized MCPs have high adsorption capacity for both metal ions (126.58 mg/g for Cu(II) and 66.23 mg/g for Ni(II)), and have excellent regeneration stability with efficiency of greater than 83% after five cycles of the adsorption–regeneration process. The adsorption process of Ni(II) and Cu(II) on MCPs was feasible, spontaneous and exothermic, and better described by the Langmuir model and pseudo-second-order kinetic equation. The MCPs can be applied as a low cost and highly efficient adsorbent for removal of heavy metals from wastewater due to its high adsorption capacity, easy recovery and good reusability.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

LFW (Labeled Faces in the Wild)

Labeled Faces in the Wild,是一个人脸照片数据库,旨在研究无约束的人脸识别问题。该数据集包含从网络收集的超过 13,000 张人脸图像。每张脸都标有图中人物的名字。照片中的 1680 人在数据集中有两张或更多张不同的照片。这些人脸的唯一限制是它们是由 Viola-Jones 人脸检测器检测到的。更多细节可以在下面的技术报告中找到。

OpenDataLab 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

LOL (LOw-Light dataset)

LOL 数据集由 500 个低光和正常光图像对组成,分为 485 个训练对和 15 个测试对。低光图像包含照片捕获过程中产生的噪声。大多数图像是室内场景。所有图像的分辨率均为 400×600。

OpenDataLab 收录