five

Preparation of cross-linked magnetic chitosan particles from steel slag and shrimp shells for removal of heavy metals

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
下载链接:
https://tandf.figshare.com/articles/dataset/Preparation_of_cross-linked_magnetic_chitosan_particles_from_steel_slag_and_shrimp_shells_for_removal_of_heavy_metals/5106871/1
下载链接
链接失效反馈
资源简介:
In this study, a new method for preparation of cross-linked magnetic chitosan particles (MCPs) from steel slag and shrimp shells using green tea extract as crosslinking reagent has been presented. The MCPs obtained were characterized by means of X-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy and magnetic properties, and then were used to investigate the adsorption properties of Cu(II) and Ni(II) ions in aqueous solutions. The influence of experimental conditions such as contact time, pH value, adsorbent dose and initial metal concentration, and the possibility of regeneration were studied systematically. The Cu(II) and Ni(II) adsorption isotherms, kinetics and thermodynamics have been measured and discussed. The results show that the synthesized MCPs have high adsorption capacity for both metal ions (126.58 mg/g for Cu(II) and 66.23 mg/g for Ni(II)), and have excellent regeneration stability with efficiency of greater than 83% after five cycles of the adsorption–regeneration process. The adsorption process of Ni(II) and Cu(II) on MCPs was feasible, spontaneous and exothermic, and better described by the Langmuir model and pseudo-second-order kinetic equation. The MCPs can be applied as a low cost and highly efficient adsorbent for removal of heavy metals from wastewater due to its high adsorption capacity, easy recovery and good reusability.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

yolo-datasets

深度学习目标检测数据集/分割数据集最全最完整的数据集集合,包含电力电气领域、航空影像输电线路与输电塔分割、电力遥感风力发电机、安全带和安全绳检测、变压器漏油故障诊断、高压输电线故障检测、光伏热红外缺陷、风电光伏功率数据、变电站火灾、输电线路语义分割、配网缺陷检测、变电站设备目标检测、太阳能光伏电池板缺陷、pcb电路板检测、绝缘体检测、输电线路防震锤缺陷、电线冰雪覆盖、电力工程电网施工现场安全作业、螺丝识别检测、变电站电力设备的可见光和红外图像、无人机航拍输电线路悬垂线夹、电线线路表面损害、氧化锌避雷器破损识别、热斑光伏发电系统红外热图像等多个领域的数据集。

github 收录