five

Soil Vapor Extraction Endstate Tool (SVEET)

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
http://www.osti.gov/servlets/purl/1089746/
下载链接
链接失效反馈
资源简介:
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure. The process of gathering information and performing evaluations to support SVE remedy decisions is presented in this guidance document in a stepwise approach. Steps start with revisiting the conceptual site model after SVE has operated for a period of time. The guidance also describes information that needs to be considered in terms of the environmental impact and compliance context for optimization, transition, and closure decisions. While these elements of the remediation goal may have been considered at the onset of remediation, they should also be revisited at the time of key remediation decisions. Quantitative approaches are provided to evaluate the impact or remaining vadose zone contaminant sources on groundwater in support of optimization, transition, and closure decisions. This material highlights relatively recent advances in use of mass flux/discharge approaches and includes a calculation tool to facilitate the evaluation process. The material in these initial steps is then synthesized using a decision logic approach to optimization, transition, and closure decisions.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ICLR Peer Review and Rebuttal Process Dataset

该数据集包含从ICLR 2024和2025年收集的同行评审和反驳过程数据,数据来自OpenReview平台,包括评审者ID、初始评分和反驳后评分。评审者评分变化被追踪,使用追踪分数指标来评估评审者连续性,分数≤1表示有效使用,≥2需双重检查。数据许可证为CC BY 4.0。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

LANDSLIDE DETECTION

该数据集专注于山体滑坡现象的识别与分类,旨在为改进YOLOv8模型提供高质量的训练数据。数据集包含1600幅图像,类别数量为1,具体类别为“LANDSLIDE”。数据集的构建考虑了山体滑坡的多样性与复杂性,确保模型在实际应用中具备良好的泛化能力。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

Club Football Match Data (2000 - 2025)

该数据集提供了一个简单的入口,用于分析全球27个国家和42个联赛的足球比赛数据,包括英超、德甲和西甲等顶级联赛。数据涵盖了从2000/01赛季到2024/25赛季的最新比赛结果。数据集还包括Elo评分,每月的1号和15号对欧洲约500支最佳球队进行快照。

github 收录