five

Soil Vapor Extraction Endstate Tool (SVEET)

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
http://www.osti.gov/servlets/purl/1089746/
下载链接
链接失效反馈
资源简介:
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure. The process of gathering information and performing evaluations to support SVE remedy decisions is presented in this guidance document in a stepwise approach. Steps start with revisiting the conceptual site model after SVE has operated for a period of time. The guidance also describes information that needs to be considered in terms of the environmental impact and compliance context for optimization, transition, and closure decisions. While these elements of the remediation goal may have been considered at the onset of remediation, they should also be revisited at the time of key remediation decisions. Quantitative approaches are provided to evaluate the impact or remaining vadose zone contaminant sources on groundwater in support of optimization, transition, and closure decisions. This material highlights relatively recent advances in use of mass flux/discharge approaches and includes a calculation tool to facilitate the evaluation process. The material in these initial steps is then synthesized using a decision logic approach to optimization, transition, and closure decisions.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

stanford_cars

该数据集是一个包含多个汽车品牌和型号的图片数据集,每个图片样本都标记有相应的汽车品牌和型号信息。数据集适用于图像识别和分类任务,特别是汽车品牌和型号的识别。

huggingface 收录

M4-SAR

M4-SAR是一个多分辨率、多极化、多场景、多源数据集,用于光学与合成孔径雷达(SAR)融合的目标检测。该数据集由南京理工大学PCA实验室、安徽大学ICSP教育部重点实验室和南开大学计算机科学学院共同构建,包含112,184对精确对齐的图像和近一百万个标注实例。数据集覆盖六个关键类别,并使用公开的光学和SAR数据,包括Sentinel-1和Sentinel-2卫星提供的数据。为了克服SAR标注的挑战,该研究提出了一种半监督的光学辅助标注策略,利用光学图像的语义丰富性来显著提高标注质量。M4-SAR数据集旨在解决现有光学和SAR数据集的局限性,为多源融合目标检测任务提供大规模、高质量、标准化的数据集,并推动相关研究的发展。

arXiv 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录