five

Soil Vapor Extraction Endstate Tool (SVEET)

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
http://www.osti.gov/servlets/purl/1089746/
下载链接
链接失效反馈
资源简介:
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure. The process of gathering information and performing evaluations to support SVE remedy decisions is presented in this guidance document in a stepwise approach. Steps start with revisiting the conceptual site model after SVE has operated for a period of time. The guidance also describes information that needs to be considered in terms of the environmental impact and compliance context for optimization, transition, and closure decisions. While these elements of the remediation goal may have been considered at the onset of remediation, they should also be revisited at the time of key remediation decisions. Quantitative approaches are provided to evaluate the impact or remaining vadose zone contaminant sources on groundwater in support of optimization, transition, and closure decisions. This material highlights relatively recent advances in use of mass flux/discharge approaches and includes a calculation tool to facilitate the evaluation process. The material in these initial steps is then synthesized using a decision logic approach to optimization, transition, and closure decisions.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

Asteroids by the Minor Planet Center

包含所有已知小行星的轨道数据和观测数据。数据来源于Minor Planet Center,格式包括Fortran (.DAT)和JSON,数据集大小为81MB(压缩)和450MB(未压缩),记录数约750,000条,每日更新。

github 收录

HIT-UAV

HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。

github 收录

HIT-UAV Dataset

The HIT-UAV: A High-Altitude Infrared Thermal Dataset for Unmanned Aerial Vehicle-Based Object Detection dataset consists of 2,898 infrared thermal images. These images were extracted from a larger pool of 43,470 frames sourced from numerous videos, all of which were publicly available and had undergone desensitization for privacy reasons. In order to enhance the dataset's utility for various tasks, the HIT-UAV10 dataset includes two types of annotated bounding boxes for each object within the images: oriented bounding boxes, designed to address the challenge of significant overlap between object instances in aerial images, and standard bounding boxes, aimed at facilitating efficient dataset utilization. This comprehensive dataset encompasses five distinct object categories: person, car, bicycle, other vehicle, and dontcare, totaling 24,899 annotated objects. The DontCare category encompasses objects that proved difficult for annotators to categorize accurately, with additional details provided in the Methods section.

datasetninja.com 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录