桃園市消防安全設備查察處理10703.csv|消防安全数据集|行政监管数据集
收藏Figshare
Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。
figshare.com 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录
De-Solar Dataset
De-Solar Dataset是一个基于无人机的高质量数据集,用于支持太阳能光伏系统中的障碍物定位和性能评估。它包含超过3,500张手动标记的图像,拍摄高度在15到50英尺之间,每张图像都标注了常见表面障碍物的多边形掩码,如树枝、泥土、树叶、鸟粪和纸张。除了图像数据外,数据集还包括时间戳对齐的电压读数与环境元数据,能够详细分析特定障碍物如何影响面板性能。数据集位于De-Solar Dataset文件夹中,并分为以下组件:Voltage_Data/(包含图像路径、电压读数和环境变量的Excel文件)、Original/(包括原始无人机图像、对应的标注JSON文件和分割掩码)、Cropped_Folder/(包含从原始图像中提取的太阳能电池板的裁剪图像,用于模型训练)、Ground_Folder/(包含数据集中的地面图像)、SolarPV/(包含Solarformer++的数据集)。
github 收录
ReferCOCO数据集
ReferCOCO数据集包括refcoco、refcoco+和refcocog三个子集,用于视觉定位任务。数据集包含图像和对应的描述性文本,用于训练和测试模型识别图像中特定对象的能力。
github 收录
YOLO Drone Detection Dataset
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。
github 收录