five

PUMA Survey 5.2. Insights in societal changes in Austria

收藏
CESSDA2024-09-14 更新2024-08-03 收录
下载链接:
https://datacatalogue.cessda.eu/detail?lang=en&q=732665d3017608d1bc5ae8fc0c5c7bd6a5497c62be580593dc12b50a5737f258
下载链接
链接失效反馈
资源简介:
Full edition for scientific use. PUMA Surveys consist of separate modules designed and prepared by different principle investigators. This PUMA Survey consists of three modules: MODULE 1 "Non-Health Influences on Generic Health Ratings: Comparing the Susceptibility of Self-Rated Health (SRH) and the Minimum European Health Module (MEHM) to Biases Due to Optimism, Hypochondriasis, and Social Desirability", MODULE 2 "Online completion versus face-to-face completion. Testing mixing modes of data collection for Austrian social surveys", MODULE 3 "Concerns of Smartphone Owners When Using their Device for Research". Fieldwork was conducted by Statistics Austria.<br><br/>MODULE 1: Non-Health Influences on Generic Health Ratings: Comparing the Susceptibility of Self-Rated Health (SRH) and the Minimum European Health Module (MEHM) to Biases Due to Optimism, Hypochondriasis, and Social Desirability (Patrick Lazarevič, Martina Brandt, Marc Luy, Caroline Berghammer) <br> Self-rated health (SRH) is the most widely used single-indicator of health in many scientific disciplines (Jylhä 2009). Even though more comprehensive approaches to measure generic health exist, they are often too time consuming for survey interviews, especially in multi-thematic surveys, due to time limitations. Research in this regard has shown that, even when controlling for comprehensive health information, SRH is noticeably and independently influenced by non-health factors like satisfaction with life or social participation (e.g., Lazarevič 2018). While these results illustrate that health ratings are influenced by non-health factors, the personality traits that are assumed to bias SRH (e.g., optimism, social desirability, or hypochondriasis) are typically not directly measured. The Minimum European Health Module (MEHM), as proposed by Robine & Jagger (2003), complements SRH with the questions whether the respondent suffers from a chronic disease and whether and to what extent they are limited in their usual activities due to a health problem. Thus, MEHM can be seen as a compromise between using SRH as a single-indicator and a comprehensive scale while covering the two most relevant factors for health ratings, i.e., chronic diseases and the functional status (Lazarevič 2018). While MEHM is obviously less time- and cost-intensive than more comprehensive approaches to measure health and there was some research done on its components separately (e.g., Berger et al. 2015), hardly anything is known about its usefulness as a short-scale of generic health, its overall psychometric properties, and its susceptibility to non-health factors potentially biasing the health measurement. This module tested the feasibility and utility of using the Minimum European Health Module (MEHM) as a short scale for measuring generic health. We demonstrate the feasibility of extracting a factor score from MEHM utilizing confirmatory factor analyses based on polychoric correlations. Further analyses suggest that this factor score might be useful in reducing bias in generic health measurement due to optimism and social desirability. <br/><br>MODULE 2: Online completion versus face-to-face completion. Testing mixing modes of data collection for Austrian social surveys (Markus Hadler, Franz Höllinger, Anja Eder) <br> Collecting data online is a promising tool, given the problems survey research faces in terms of lowering response rates and increasing costs. Yet, the results on the comparability of online and face-to-face surveys are ambiguous (see Roberts et al. 2016). Therefore, the aim of our research is to test differences in responses when completing surveys online compared to collecting the same data face-to-face. Our PUMA-module collects some of the core ISSP questions online, which were asked face-to-face (CAPI) in the same time-period. The topics of the ISSP questionnaires 2017 and 2018 are “Social Networks” and “Religion.” At face value, we expect that these two areas may attract different respondents when conducted online as compared to face-to-face. Online networking should be more prevalent and traditional religious activities less common among the online respondents. If there are no significant differences between these two samples, our study will be a strong indicator that online tools are valid instruments. Therefore, the mixed modes design aims to break new ground in understanding the advantages and limitations, the costs and benefits of combining online and face-to-face interviews in Austria on the basis of two prominent survey modules from the International Social Survey Programme. <br/><br>MODULE 3: Concerns of Smartphone Owners When Using their Device for Research (Florian Keusch, Martin Weichbold) <br> Smartphone use is on the rise worldwide (Pew Research Center 2017). Survey researchers are aware that smartphone users increasingly complete online surveys on their mobile devices and have investigated the quality of survey data provided via smartphones (e.g., Couper et al. 2017; Keusch & Yan 2017). At the same time, the rising penetration of smartphones also gives researchers the chance to collect data from smartphone users that goes beyond self-reporting through surveys. Smartphones can be used to collect a variety of data about respondents such as geolocation, measures of physical activity, online behavior and browser history, app usage, call logs, or photos (Link et al. 2014). These data would allow researchers to make inferences about, among others, users’ mobility patterns, consumer behavior, health, and social interactions. Compared to surveys, which rely on self-reports, passive mobile data collection has the potential to provide richer data (because it can be collected in much higher frequencies), to decrease respondent burden (because fewer survey questions need to be asked), and to reduce measurement error (because of reduction in recall errors and social desirability). However, agreeing to allow for passive collection of data from smartphones is an additional step in the consent process, and participants might feel uncomfortable sharing these data with researchers due to security, privacy, and confidentiality concerns. In addition, different subgroups might differ in their skills of smartphone use and thus feel more or less comfortable using smartphones for research, leading to bias due to differential nonresponse of specific groups. This module wants to find out whether new forms of smartphone data collection (using sensors, apps, and camera) could be a supplement to survey research as they provide rich data and could enlarge our knowledge about people’s behavior while reducing respondent burden. Collecting these data has ethical and practical implications: agreeing to collect data from smartphones is an additional step in the consent process, and participants might feel uncomfortable sharing these data with researchers due to security, privacy, and confidentiality concerns. In addition, different subgroups might differ in their skills of smartphone use and thus feel more or less comfortable using smartphones for research, leading to bias due to differential nonparticipation of specific groups. We find that concern for using smartphones for research differs by research task, and that the diversity of smartphone activities correlates with concern.
提供机构:
The Austrian Social Science Data Archive
创建时间:
2019-04-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Population and Housing Census of 2007 - Ethiopia

Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Household Person Housing unit Universe --------------------------- The census has counted people on dejure and defacto basis. The dejure population comprises all the persons who belong to a given area at a given time by virtue of usual residence, while under defacto approach people were counted as the residents of the place where they found. In the census, a person is said to be a usual resident of a household (and hence an area) if he/she has been residing in the household continuously for at least six months before the census day or intends to reside in the household for six months or longer. Thus, visitors are not included with the usual (dejure) population. Homeless persons were enumerated in the place where they spent the night on the enumeration day. The 2007 census counted foreign nationals who were residing in the city administration. On the other hand all Ethiopians living abroad were not counted. Kind of data --------------------------- Census/enumeration data [cen] Mode of data collection --------------------------- Face-to-face [f2f] Research instrument --------------------------- Two type sof questionnaires were used to collect census data: i) Short questionnaire ii) Long questionnaire Unlike the previous censuses, the contents of the short and long questionnaires were similar both for the urban and rural areas as well as for the entire city. But the short and the long questionnaires differ by the number of variables they contained. That is, the short questionnaire was used to collect basic data on population characteristics, such as population size, sex, age, language, ethnic group, religion, orphanhood and disability. Whereas the long questionnaire includes information on marital status, education, economic activity, migration, fertility, mortality, as well as housing stocks and conditions in addition to those questions contained in a short questionnaire.

catalog.ihsn.org 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

NIRS_DataSets

包含多个近红外光谱相关的数据集,用于分析和预测不同物质的特性,如药物成分、食品老化、谷物蛋白质等。

github 收录

AQA-7

AQA-7 是一个用于动作质量评估(AQA)的统一基准数据集,旨在通过整合多个领域的数据集来标准化评估方法。该数据集包含视频、骨骼数据和多模态输入,涵盖了体育分析、技能评估和医疗护理等多个应用领域。数据集的创建过程通过系统分析现有文献和实验协议,确保了评估的准确性和计算效率。AQA-7 的应用领域广泛,旨在解决动作质量评估中的偏差问题,提供客观的自动化评估,特别是在体育评分、技能评估和康复训练中具有重要意义。

arXiv 收录