PAN-00072533 - iron spoon drill
收藏N-MNIST (Neuromorphic-MNIST)
简要说明 Neuromorphic-MNIST (N-MNIST) 数据集是原始基于帧的 MNIST 数据集的尖峰版本。它由与原始 MNIST 数据集相同的 60 000 个训练样本和 10 000 个测试样本组成,并以与原始 MNIST 数据集(28x28 像素)相同的视觉比例捕获。 N-MNIST 数据集是通过将 ATIS 传感器安装在电动云台装置上并让传感器在 LCD 监视器上查看 MNIST 示例时移动来捕获的,如本视频所示。可以在下面的论文中找到对数据集及其创建方式的完整描述。如果您使用数据集,请引用本文。果园,G。科恩,G。贾亚万特,A。和 Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades”,《神经科学前沿》,第 9 卷,第 437 期,2015 年 10 月
OpenDataLab 收录
Wafer Defect
该数据集包含了七个主要类别的晶圆缺陷,分别是:BLOCK ETCH、COATING BAD、PARTICLE、PIQ PARTICLE、PO CONTAMINATION、SCRATCH和SEZ BURNT。这些类别涵盖了晶圆在生产过程中可能出现的多种缺陷类型,每一种缺陷都有其独特的成因和表现形式。数据集不仅在类别数量上具有多样性,而且在样本的多样性和复杂性上也展现了其广泛的应用潜力。每个类别的样本均经过精心标注,确保了数据的准确性和可靠性。
github 收录
中国沙漠边界数据集(2000-2020年)
本数据集基于Landsat遥感影像,通过辐射定标和大气校正等预处理算法得到沙漠区域影像,通过人工目视解译及波段指数的方法提提取沙漠边界区域。数据集涉及的沙漠主要包括中国八大沙漠。分别为腾格里沙漠,塔克拉马干沙漠,巴丹吉林沙漠,库布奇沙漠,乌兰布和沙漠,库木塔格沙漠,古尔班通古特沙漠,...
国家冰川冻土沙漠科学数据中心 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
PASCAL VOC 2007
这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。
OpenDataLab 收录
