five

Country Matrixes for QCA Analysis

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
下载链接:
https://data.mendeley.com/datasets/nz252wbjyn
下载链接
链接失效反馈
资源简介:
Assessment of key enabling factors for smallholder commercial tree growing in Indoensia (Java and Kalimantan & Sumatra), Tanzania, Uganda and Vietnam between 1990-2015. Factors cover remote conditions (Land and forest tenure TEN; Wood demand and supply balance (demographic factors, industry and trade) DEMSUP; Land use pressures and competition with agriculture AGR; Macroeconomic environment (GDP/GNI per capita, economic growth and stability); and political stability MACRO) and proximate conditions (Wood markets and pricing MAR; Capacity and knowledge in tree growing KNOW; Direct incentives (goods and materials; grants; tax reliefs, concessions; differential fees etc. DIRINC ; and Indirect incentives (advisory services and trainings, stronger tenure rights on land etc. INDIRINC). The data has been collected through a desk review and it analyzed extensive amount of relevant previous research and existing documentation from all case-study countries to answer the questions related to factors and their indicators in the data matrix. Studies and documents were searched by country with Google Scholar, Web of Science and Google for each enabling factor with specific key words. Document relevance was assessed based on the abstracts or summaries of the documents, and presumptive reliability of the source as not all the documents were from peer reviewed journals. The data for Laos and Tanzania was completed with field research findings. Data collection for Vietnam was mainly carried out by research partners from CIFOR. All country matrixes were reviewed by highly recognized partners with in-depth knowledge of the country and the sector to increase the level of objectivity in the data interpretation. Analysis of the Indonesia data showed significant regional differences in the enabling factors between Java and Kalimantan and Sumatra. Each factor consists of several indicators ranked as POS if they can be considered being supportive for smallholder tree growing and NEG if they have a negative impact. Once a pre-set number of indicators are positive the factor can also be considered POSITIVE, i.e. supportive for smallholder commercial tree growing.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

红外谱图数据库

收集整理红外谱图实验手册等数据,建成了红外谱图数据库。本数据库收录了常见化合物的红外谱图。主要包括化合物数据和对应的红外谱图数据。其中,原始红外谱图都进行了数字化处理,从而使谱峰检索成为可能。用户可以在数据库中检索指定化合物的谱图,也可以提交谱图/谱峰数据,以检索与之相似的谱图数据,以协助进行谱图鉴定。

国家基础学科公共科学数据中心 收录

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

UAV-CD

UAV-CD数据集包含2,660对768×768像素的无人机光学图像,空间分辨率为0.06米。数据集主要涉及建筑物的增加和拆除,并进一步通过增加土地变化来丰富样本的多样性。

github 收录