five

OECD Income Distribution Database|收入分配数据集|贫困研究数据集

收藏
www.oecd.org2024-10-26 收录
收入分配
贫困研究
下载链接:
https://www.oecd.org/els/soc/income-distribution-database.htm
下载链接
链接失效反馈
资源简介:
OECD收入分配数据库提供了关于收入分配和贫困的详细数据,包括收入中位数、收入分配的基尼系数、贫困率等指标。数据涵盖了OECD成员国和其他选定的国家,时间跨度从1970年代至今。
提供机构:
www.oecd.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
OECD收入分配数据库的构建基于OECD成员国和部分非成员国的官方统计数据,涵盖了从1970年至今的时间序列。该数据库通过整合各国统计局、税务部门和福利机构的数据,采用一致的统计方法和分类标准,确保了数据的国际可比性。数据收集过程严格遵循国际统计标准,经过多轮质量控制和验证,以确保数据的准确性和可靠性。
特点
OECD收入分配数据库的特点在于其全面性和细致性。该数据库不仅提供了各国的收入分配指标,如基尼系数、收入五等分位数等,还包含了收入来源、税收和转移支付等详细信息。此外,数据集还提供了按性别、年龄、教育水平等不同维度的细分数据,为深入分析收入分配的结构性问题提供了丰富的数据支持。
使用方法
OECD收入分配数据库的使用方法多样,适用于经济学、社会学、公共政策等多个领域的研究。研究者可以通过该数据库进行跨国比较分析,探讨不同国家收入分配的差异及其成因。此外,政策制定者可以利用该数据集评估现行政策的有效性,并为制定新的收入分配政策提供数据支持。数据集还支持时间序列分析,帮助研究者追踪收入分配的长期变化趋势。
背景与挑战
背景概述
OECD收入分配数据库(OECD Income Distribution Database)是由经济合作与发展组织(OECD)创建和维护的一个综合性数据集,旨在提供关于成员国收入分配的详细统计数据。该数据集的创建时间可追溯至20世纪末,主要研究人员和机构包括OECD的经济学家和统计学家团队。其核心研究问题集中在收入不平等、贫困率以及收入分配的动态变化上。OECD收入分配数据库对经济学和社会政策领域产生了深远影响,为政策制定者提供了关键的数据支持,以制定和评估旨在减少收入不平等和改善社会福利的政策。
当前挑战
OECD收入分配数据库在解决收入分配领域问题时面临多项挑战。首先,数据收集和更新过程复杂,涉及多个国家和地区的统计系统,确保数据的准确性和一致性是一大难题。其次,收入分配的动态变化要求数据集能够及时反映最新的经济和社会变化,这对数据更新的频率和质量提出了高要求。此外,数据集需要处理不同国家间的统计方法和定义差异,以确保国际比较的有效性。最后,数据隐私和安全问题也是构建过程中不可忽视的挑战,尤其是在涉及敏感个人收入信息时。
发展历史
创建时间与更新
OECD Income Distribution Database由经济合作与发展组织(OECD)于2005年创建,旨在提供关于成员国收入分配的详细数据。该数据库定期更新,最新数据通常每年发布一次,确保信息的时效性和准确性。
重要里程碑
OECD Income Distribution Database的一个重要里程碑是其在2011年的全面更新,引入了更多国家和地区的数据,包括非OECD成员国,极大地扩展了数据覆盖范围。此外,2015年,该数据库增加了对收入不平等和贫困的深入分析工具,为政策制定者和研究人员提供了更为丰富的数据支持。
当前发展情况
当前,OECD Income Distribution Database已成为全球收入分配研究的重要资源,为学术界、政策制定者和国际组织提供了关键数据。该数据库不仅支持对收入不平等的深入研究,还促进了跨国比较和政策评估。通过持续的数据更新和功能扩展,OECD Income Distribution Database在推动全球收入分配领域的研究和政策制定中发挥了不可或缺的作用。
发展历程
  • OECD首次发布收入分配数据库,旨在提供成员国和非成员国的收入分配数据,以支持政策分析和研究。
    1995年
  • 数据库进行了首次重大更新,增加了更多国家和地区的数据,并引入了新的收入分配指标。
    2000年
  • OECD收入分配数据库首次应用于全球收入不平等研究,成为国际比较分析的重要工具。
    2005年
  • 数据库再次更新,引入了更详细的收入分组数据,并增加了对收入分配趋势的长期分析。
    2010年
  • OECD收入分配数据库首次与联合国和其他国际组织的数据库进行整合,提升了全球收入分配数据的完整性和一致性。
    2015年
  • 数据库进行了最新一次更新,增加了对新兴经济体和低收入国家的覆盖,进一步扩展了其全球适用性。
    2020年
常用场景
经典使用场景
OECD收入分配数据库(OECD Income Distribution Database)广泛应用于经济学和社会学领域,主要用于分析和比较不同国家和地区的收入分配情况。该数据集提供了详细的收入分配指标,包括基尼系数、收入五等分组、收入中位数等,为研究者提供了丰富的数据支持,以便深入探讨收入不平等的成因及其对社会经济的影响。
衍生相关工作
OECD收入分配数据库的发布催生了一系列相关的经典研究工作。例如,许多学者利用该数据集进行了跨国收入不平等的比较研究,揭示了不同国家收入分配模式的差异及其影响因素。此外,该数据集还促进了关于收入分配与经济增长、社会福利等议题的深入探讨,推动了经济学和社会学领域对收入分配问题的进一步研究。
数据集最近研究
最新研究方向
在经济合作与发展组织(OECD)收入分配数据库的最新研究中,学者们聚焦于全球收入不平等的动态变化及其对社会经济结构的影响。通过深入分析跨国收入分配数据,研究者们揭示了不同国家收入分配模式的差异及其背后的政策因素。这些研究不仅有助于理解收入不平等的根源,还为制定更有效的社会政策提供了科学依据。此外,随着大数据和机器学习技术的应用,研究者们能够更精确地预测收入分配趋势,从而为政策制定者提供更具前瞻性的建议。
相关研究论文
  • 1
    OECD Income Distribution Database: Data DocumentationOECD · 2018年
  • 2
    Income Inequality and Economic Growth: Evidence from OECD CountriesUniversity of Rome Tor Vergata · 2020年
  • 3
    The Impact of Income Inequality on Social Welfare: A Cross-Country AnalysisUniversity of California, Berkeley · 2021年
  • 4
    Income Inequality and Economic Policy: Lessons from OECD CountriesHarvard University · 2019年
  • 5
    The Role of Education in Reducing Income Inequality: Evidence from OECD CountriesStanford University · 2022年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录