five

AmelHap pilot: filter1 data

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/6563399
下载链接
链接失效反馈
资源简介:
Honey bee Apis mellifera drones are typically haploid, developing from an unfertilized egg, inheriting only their queen’s alleles and none from the many drones she mated with. Being haploid, the ordered combination or ‘phase’ of alleles is known, making drones a valuable haplotype resource. We collated whole genome sequence data for 688 drones, including 45 newly sequenced Scottish drones, which collectively represent 13 countries, 7 subspecies and various hybrids strains. After alignment to the reference assembly Amel_Hav3.1, and haploid variant calling, we identified 18.9M variants. Whole-genome sequencing data underpinning the dataset is available from the European Nucleotide Archive (ENA), https://www.ebi.ac.uk/ena, with the project accession codes: PRJEB16533, PRJNA311274, PRJNA363032, PRJNA516678, PRJNA544324, and PRJEB39369. Sequencing reads were aligned to the Amel_HAv3.1 reference genome using BWA-MEM v0.7.17. Reads were sorted with SAMtools v1.9 and duplicates marked (MarkDuplicates) with GATK v4.0.11.0. Variants for each sample were called using GATK’s HaplotypeCaller with the following non-default parameters --ERC GVCF, --sample-ploidy 1 and -A AlleleFraction. Joint variant calling was performed across all samples using GATK’s GenomicDBImport and GenotypeGVCFs with --sample-ploidy 1 and a window size of 2.5 Mb. This dataset is the result of applying filters to exclude variants with 'QD<20 || QD>40 || MQ < 50 || SOR >3' in the raw dataset, leaving 16.6M variants. The code used in filtering is outlined here: https://bitbucket.org/scriptBee/hapmap-pilot.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

中国陆地实际蒸散发数据集(1982-2024)

本数据集为基于蒸散发互补方法研制的中国陆地蒸散发数据产品v2.0。输入数据包括CMFD v2的向下短波辐射、向下长波辐射、气温、湿度、风速、气压,GLASS反照率、发射率等,以及ERA5-Land地表温度等。本数据集时间跨度为1982年-2024年,空间范围为中国陆地。本数据集可为研究长时间尺度水循环和气候变化提供基础。陆地实际蒸散发 (Ea),单位: mm/month。 时间分辨率为逐月;空间分辨率为0.1°。数据类型:NetCDF;本数据仅为陆地实际蒸散发,不含水面。

国家青藏高原科学数据中心 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录