five

AmelHap pilot: filter1 data

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/6563399
下载链接
链接失效反馈
资源简介:
Honey bee Apis mellifera drones are typically haploid, developing from an unfertilized egg, inheriting only their queen’s alleles and none from the many drones she mated with. Being haploid, the ordered combination or ‘phase’ of alleles is known, making drones a valuable haplotype resource. We collated whole genome sequence data for 688 drones, including 45 newly sequenced Scottish drones, which collectively represent 13 countries, 7 subspecies and various hybrids strains. After alignment to the reference assembly Amel_Hav3.1, and haploid variant calling, we identified 18.9M variants. Whole-genome sequencing data underpinning the dataset is available from the European Nucleotide Archive (ENA), https://www.ebi.ac.uk/ena, with the project accession codes: PRJEB16533, PRJNA311274, PRJNA363032, PRJNA516678, PRJNA544324, and PRJEB39369. Sequencing reads were aligned to the Amel_HAv3.1 reference genome using BWA-MEM v0.7.17. Reads were sorted with SAMtools v1.9 and duplicates marked (MarkDuplicates) with GATK v4.0.11.0. Variants for each sample were called using GATK’s HaplotypeCaller with the following non-default parameters --ERC GVCF, --sample-ploidy 1 and -A AlleleFraction. Joint variant calling was performed across all samples using GATK’s GenomicDBImport and GenotypeGVCFs with --sample-ploidy 1 and a window size of 2.5 Mb. This dataset is the result of applying filters to exclude variants with 'QD<20 || QD>40 || MQ < 50 || SOR >3' in the raw dataset, leaving 16.6M variants. The code used in filtering is outlined here: https://bitbucket.org/scriptBee/hapmap-pilot.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

STKit

STKit是一个旨在增强视觉语言模型(VLMs)在动态视频中进行时空推理能力的数据集,包含现实世界视频的3D注释,详细描述了对象的运动动力学,如旅行距离、速度、移动方向等。该数据集通过结合标注数据和伪标签数据,支持LLaVA-OneVision模型的微调,以生成具备时空推理能力的ST-VLM模型。

arXiv 收录