five

Complete List of Checkers South Africa Locations|零售地理信息数据集|连锁超市数据集

收藏
www.aggdata.com2025-03-25 收录
零售地理信息
连锁超市
下载链接:
https://www.aggdata.com/aggdata/complete-list-checkers-south-africa-locations
下载链接
链接失效反馈
资源简介:
This is a complete list of Checkers South Africa locations along with their geographical coordinates. Checkers is a grocery store chain that consistently offers customers savings as well as a range of specialty products including extra-matured Steakhouse Classic Steaks, free-range Certified Natural Lamb, award-winning cheese and wines from over 80 of South Africa’s leading estates. This data includes phone numbers and addresses for each location.\n

此数据集详尽列出了Checkers南非各分店的位置及其地理坐标。Checkers连锁超市一贯致力于为客户提供优惠的同时,提供一系列特色产品,包括熟成期超长的Steakhouse Classic牛排、放养认证的自然羊肉、荣获奖项的来自南非80多家领先酒庄的奶酪和葡萄酒。该数据集还包含了每个分店的电话号码和地址。
提供机构:
www.aggdata.com
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

中国区域250米植被覆盖度数据集(2000-2024)

该数据集是中国区域2000至2024年月度植被覆盖度产品,空间分辨率250米,合成方式采用月最大值合成,每年12期,共299期。本产品采用基于归一化植被指数(NDVI)像元二分模型,根据土地利用类型确定纯植被像元值和纯裸土像元值,实现植被覆盖度计算。本产品去除湖泊、河流、冰川/永久积雪等区域。其中,NDVI数据来源于国家青藏高原科学数据中心中国区域250米归一化植被指数数据集(2000-2024)产品。通过时空变化趋势分析检验法分析,该数据集符合时间变化趋势和空间变化趋势。该数据集能够为全国区域生态质量评价、重要生态空间调查评估等工作提供数据参考。

国家青藏高原科学数据中心 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录