湖里区精细化网格总量
收藏OpenSonarDatasets
OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。
github 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
Materials Project 在线材料数据库
Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。
超神经 收录
Water temperature and current velocity from surface drifter SVP_9524404
This dataset is about: Water temperature and current velocity from surface drifter SVP_9524404.
doi.pangaea.de 收录
boat
本项目所使用的数据集名为“boat”,旨在为改进YOLOv11的船舶类型检测系统提供丰富的训练素材。该数据集包含六个主要类别,分别为:散货船、集装箱船、渔船、一般货船、矿石运输船和客船。这些类别涵盖了船舶运输行业的多样性,确保了模型在不同类型船舶识别上的全面性和准确性。数据集中的图像经过精心挑选和标注,确保每个类别的样本都具有代表性。通过使用“boat”数据集,改进后的YOLOv11模型将能够更准确地识别和分类不同类型的船舶,从而提高船舶监测和管理的效率。
github 收录
