five

Salix phenology

收藏
DataONE2024-06-09 更新2024-06-22 收录
下载链接:
https://search.dataone.org/view/sha256:3bc247941d94540c88e96a8ca09aa3324bb5df83db5b9d27d1fb9bcb745042cf
下载链接
链接失效反馈
资源简介:
Weekly data on flowering phenology in the permanent Salix arctica plots. For further details, please refer to the newest BioBasis manual available at the website.
创建时间:
2024-06-09
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ICLR Peer Review and Rebuttal Process Dataset

该数据集包含从ICLR 2024和2025年收集的同行评审和反驳过程数据,数据来自OpenReview平台,包括评审者ID、初始评分和反驳后评分。评审者评分变化被追踪,使用追踪分数指标来评估评审者连续性,分数≤1表示有效使用,≥2需双重检查。数据许可证为CC BY 4.0。

github 收录

PrimerBank

PrimerBank is a public resource for PCR primers. These primers are designed for gene expression detection or quantification (real-time PCR). PrimerBank contains over 306,800 primers covering most known human and mouse genes.

国家生物信息中心 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

OpenML-CC18

我们提倡使用经过整理的、全面的机器学习数据集基准测试套件,以标准化的基于 OpenML 的接口和用 Python、Java 和 R 编写的互补软件工具包为后盾。我们展示了如何使用标准化的基于 OpenML 的基准测试套件轻松执行全面的基准测试研究以及用 Python、Java 和 R 编写的互补软件工具包。 OpenML 基准测试套件的主要显着特点是 (i) 通过标准化数据格式、API 和现有客户端库易于使用; (ii) 关于套件内容的机器可读元信息; (iii) 在线共享结果,实现大规模比较。作为第一个这样的套件,我们提出了 OpenML-CC18,这是一个机器学习基准套件,包含 72 个分类数据集,从 OpenML 上的数千个数据集中精心策划。纳入标准是: * 密集数据集独立观察的分类任务 * 类数 >= 2,每个类至少有 20 个观察和少数类与多数类的比例必须超过 5% * 500 <= 观察数 <= 100000 * one-hot-encoding 后的特征数量 < 5000 * 没有人工数据集 * 没有更大数据集的子集,也没有其他数据集的二值化 * 没有可以通过使用单个特征或使用简单的决策树来完全预测的数据集* 来源或参考可用 如果您使用此基准测试套件,请引用:Bernd Bischl、Giuseppe Casalicchio、Matthias Feurer、Frank Hutter、Michel Lang、Rafael G. Mantovani、Jan N. van Rijn 和 Joaquin Vanschoren。 “OpenML 基准测试套件”arXiv:1708.03731v2 [stats.ML] (2019)。 @article{oml-benchmarking-suites, title={OpenML Benchmarking Suites}, author={Bernd Bischl and Giuseppe Casalicchio and Matthias Feurer and Frank Hutter and Michel Lang and Rafael G. Mantovani and Jan N. van Rijn and Joaquin Vanschoren},年={2019},日记={arXiv:1708.03731v2 [stat.ML]} }

OpenDataLab 收录

EdNet

displayName: EdNet license: - CC BY-NC 4.0 paperUrl: https://arxiv.org/pdf/1912.03072v3.pdf publishDate: "2019" publishUrl: https://github.com/riiid/ednet publisher: - University of Michigan - Yale University - University of California, Berkeley - Riiid AI Research tags: - Student Activities taskTypes: - Knowledge Tracing --- # 数据集介绍 ## 简介 圣诞老人收集的各种学生活动的大规模分层数据集,一个配备人工智能辅导系统的多平台自学解决方案。 EdNet 包含 2 年多来收集的 784,309 名学生的 131,441,538 次互动,这是迄今为止向公众发布的 ITS 数据集中最大的。资料来源:EdNet:教育中的大规模分层数据集 ## 引文 ``` @inproceedings{choi2020ednet, title={Ednet: A large-scale hierarchical dataset in education}, author={Choi, Youngduck and Lee, Youngnam and Shin, Dongmin and Cho, Junghyun and Park, Seoyon and Lee, Seewoo and Baek, Jineon and Bae, Chan and Kim, Byungsoo and Heo, Jaewe}, booktitle={International Conference on Artificial Intelligence in Education}, pages={69--73}, year={2020}, organization={Springer} } ``` ## Download dataset :modelscope-code[]{type="git"}

魔搭社区 收录