Soil Systems, Inc. Cremation Summaries for the DMB/Pueblo Grande Project
收藏MMOral
MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。
arXiv 收录
PlantVillage
在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。
OpenDataLab 收录
OpenECG
OpenECG是一个包含来自九个中心共120万份12导联ECG记录的大型基准数据集,用于评估基于公开数据集训练的ECG基础模型。该数据集整合了多个公开可用的12导联ECG数据集,涵盖了483,837名患者的1,233,337份ECG记录,包括临床诊断标注和自监督学习的未标注原始信号。
arXiv 收录
TCM-Tongue
TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。
arXiv 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
