2012 Crash Locations
收藏SVAMP
在解决基础应用数学问题时,模型往往主要依赖于浅层启发式方法,而非进行深度推理。因此,一个更具挑战性且经过可靠评估的SVAMP数据集被引入。该数据集改编自现有的数据集,用于评估模型在数学问题解决和推理能力方面的敏感性,其难度保持在相当于小学四年级的水平。
github 收录
波士顿房价数据集
波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。
阿里云天池 收录
Other-Animals-10
该数据集包含103张图像,每张图像对应一个动物标签,标签类别包括熊、蜜蜂、甲虫等34种动物。数据集仅包含一个训练集,用于训练模型。
huggingface 收录
CampusGuard
CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。
github 收录
SeaDronesSee
SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。
arXiv 收录
