five

LDRAW based renders of LEGO bricks moving on a conveyor belt with extracted models

收藏
Mendeley Data2024-06-19 更新2024-06-27 收录
下载链接:
https://mostwiedzy.pl/en/open-research-data/ldraw-based-renders-of-lego-bricks-moving-on-a-conveyor-belt-with-extracted-models,202106041546359551091-0
下载链接
链接失效反馈
资源简介:
The set contains renders of LEGO bricks moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. For each brick starting position, alignment and color was selected (simulating the brick falling down on the conveyour belt) and than 10 images was created while the brick was moved across the conveyor belt. Afterwards empty frames, with no brick visible, were removed from the set. The images were saved in JPEG format. All images were generated using Blender (https://www.blender.org/) tool and were based on the 3D models from LDraw (https://www.ldraw.org/) brick library. The bricks were than extracted from the original images using OpenCV edge detection algorithms. The colors for the LEGO bricks were selected from the following list [color (code)]: White (0xffffff), Brick Yellow (0xD9BB7B), Nougat (0xD67240), Bright Red (0xff0000), Bright Blue (0x0000ff), Bright Yellow (0xFfff00), Black (0x000000), Dark Green (0x009900), Bright Green (0x00cc00), Dark Orange (0xA83D15), Medium Blue (0x478CC6), Bright Orange (0xff6600), Bright Bluish Green (0x059D9E), Bright Yellowish-Green (0x95B90B), Bright Reddish Violet (0x990066), Sand Blue (0x5E748C), Sand Yellow (0x8D7452), Earth Blue (0x002541), Earth Green (0x003300), Sand Green (0x5F8265), Dark Red (0x80081B), Flame Yellowish Orange (0xF49B00), Reddish Brown (0x5B1C0C), Medium Stone Grey (0x9C9291), Dark Stone Grey (0x4C5156), Light Stone Grey (0xE4E4DA), Light Royal Blue (0x87C0EA), Bright Purple (0xDE378B), Light Purple (0xEE9DC3), Cool Yellow (0xFFFF99), Medium Lilac (0x2C1577), Light Nougat (0xF5C189), Dark Brown (0x300F06), Medium Nougat (0xAA7D55), Dark Azur (0x469bc3), Medium Azur (0x68c3e2), Aqua (0xd3f2ea), Medium Lavender (0xa06eb9), Lavender (0xcda4de), White Glow (0xf5f3d7), Spring Yellowish Green (0xe2f99a), Olive Green (0x77774E), Medium-Yellowish Green (0x96B93B). The original folder contains the renders themselves, the cropped_opencv directory contains only bricks extracted from th erenders. In both cases the images were placed in a folder named after the LEGO brick code (as read from LDraw). The files naming convetion is as follows brickID_colour_sequenceNumber_timestamp.jpg where brickID is the LEGO brick id number as read from LDraw, color is the name of the selected brick color, sequenceNumber is the integer from 0 to 9 indicating the number of the image in the sequence and timestamp is UNIX time representation in milliseconds of the image creation time. Sample images are presented below.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

My Sexy Neighbor 🔞 Prologue Review Stats and Historical Trends

The My Sexy Neighbor 🔞 Prologue Steam review dataset lets you explore review stats, trends, and history for My Sexy Neighbor 🔞 Prologue reviews on Steam. Data is aggregated month over month going back to November 2024.

steambase.io 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录