five

LDRAW based renders of LEGO bricks moving on a conveyor belt with extracted models

收藏
Mendeley Data2024-06-19 更新2024-06-27 收录
下载链接:
https://mostwiedzy.pl/en/open-research-data/ldraw-based-renders-of-lego-bricks-moving-on-a-conveyor-belt-with-extracted-models,202106041546359551091-0
下载链接
链接失效反馈
资源简介:
The set contains renders of LEGO bricks moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. For each brick starting position, alignment and color was selected (simulating the brick falling down on the conveyour belt) and than 10 images was created while the brick was moved across the conveyor belt. Afterwards empty frames, with no brick visible, were removed from the set. The images were saved in JPEG format. All images were generated using Blender (https://www.blender.org/) tool and were based on the 3D models from LDraw (https://www.ldraw.org/) brick library. The bricks were than extracted from the original images using OpenCV edge detection algorithms. The colors for the LEGO bricks were selected from the following list [color (code)]: White (0xffffff), Brick Yellow (0xD9BB7B), Nougat (0xD67240), Bright Red (0xff0000), Bright Blue (0x0000ff), Bright Yellow (0xFfff00), Black (0x000000), Dark Green (0x009900), Bright Green (0x00cc00), Dark Orange (0xA83D15), Medium Blue (0x478CC6), Bright Orange (0xff6600), Bright Bluish Green (0x059D9E), Bright Yellowish-Green (0x95B90B), Bright Reddish Violet (0x990066), Sand Blue (0x5E748C), Sand Yellow (0x8D7452), Earth Blue (0x002541), Earth Green (0x003300), Sand Green (0x5F8265), Dark Red (0x80081B), Flame Yellowish Orange (0xF49B00), Reddish Brown (0x5B1C0C), Medium Stone Grey (0x9C9291), Dark Stone Grey (0x4C5156), Light Stone Grey (0xE4E4DA), Light Royal Blue (0x87C0EA), Bright Purple (0xDE378B), Light Purple (0xEE9DC3), Cool Yellow (0xFFFF99), Medium Lilac (0x2C1577), Light Nougat (0xF5C189), Dark Brown (0x300F06), Medium Nougat (0xAA7D55), Dark Azur (0x469bc3), Medium Azur (0x68c3e2), Aqua (0xd3f2ea), Medium Lavender (0xa06eb9), Lavender (0xcda4de), White Glow (0xf5f3d7), Spring Yellowish Green (0xe2f99a), Olive Green (0x77774E), Medium-Yellowish Green (0x96B93B). The original folder contains the renders themselves, the cropped_opencv directory contains only bricks extracted from th erenders. In both cases the images were placed in a folder named after the LEGO brick code (as read from LDraw). The files naming convetion is as follows brickID_colour_sequenceNumber_timestamp.jpg where brickID is the LEGO brick id number as read from LDraw, color is the name of the selected brick color, sequenceNumber is the integer from 0 to 9 indicating the number of the image in the sequence and timestamp is UNIX time representation in milliseconds of the image creation time. Sample images are presented below.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

Empathizing-Systemizing Test Responses

Open sourced raw data from Openpsychometrics.org

kaggle 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录