five

Does Work-Integrated Curriculum Transformation Affect Learning Experience, Student Competencies, and Learning Interactions? The Role of Teaching Strategy Moderation

收藏
Mendeley Data2024-04-17 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/pvxwffxnwh
下载链接
链接失效反馈
资源简介:
Explanation of data related to the transformation of the Work Integrated Curriculum (X), Learning Experience Instrument (Y), Students' Competences Instrument (Y), Learning Interaction Instrument (Y), and Teaching Strategies Instrument (Z) may be related to collection, analysis and use data in the context of curriculum development and educational evaluation. The following is an explanation of each variable: 1. Work Integrated Curriculum Transformation (X): It refers to the process or change in an educational curriculum that incorporates work experience or practice as an integral part of a student's learning. Data associated with variable 2. Learning Experience Instrument (Y): It includes tools or methods used to measure or evaluate student learning experiences. Data associated with variable Y may include the results of surveys, questionnaires, or observations that measure students' perceptions of the quality of their learning experience. 3. Students' Competences (Y) Instrument: It refers to tools or methods used to assess or measure students' competence in various areas, such as academic skills, practical skills, or social skills. Data associated with this Y variable may include test results, projects, or student portfolios that demonstrate their level of competency. 4. Learning Interaction Instrument (Y): It refers to the tools or methods used to study or evaluate interactions between students, between students and teachers, or between students and learning materials. Data associated with variable Y might include classroom observations, analysis of group discussions, or results of interactive evaluations in learning environments. 5. Teaching Strategies Instrument (Z): This refers to the tools or methods used by teachers to teach material to students. Data associated with variable Z may include information about the types of teaching strategies used, teaching evaluation methods, or students' responses to those strategies. Collecting data related to variables X, Y, and Z can help educational institutions to measure the effectiveness of curriculum transformation, understand student learning experiences, evaluate student competency levels, analyze interactions in the learning environment, and improve teaching strategies to improve learning outcomes. Analysis of this data can provide valuable insights for better curriculum development and improving the overall quality of education.
创建时间:
2024-04-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

HIT-UAV

HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录