five

Does Work-Integrated Curriculum Transformation Affect Learning Experience, Student Competencies, and Learning Interactions? The Role of Teaching Strategy Moderation

收藏
Mendeley Data2024-04-17 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/pvxwffxnwh
下载链接
链接失效反馈
资源简介:
Explanation of data related to the transformation of the Work Integrated Curriculum (X), Learning Experience Instrument (Y), Students' Competences Instrument (Y), Learning Interaction Instrument (Y), and Teaching Strategies Instrument (Z) may be related to collection, analysis and use data in the context of curriculum development and educational evaluation. The following is an explanation of each variable: 1. Work Integrated Curriculum Transformation (X): It refers to the process or change in an educational curriculum that incorporates work experience or practice as an integral part of a student's learning. Data associated with variable 2. Learning Experience Instrument (Y): It includes tools or methods used to measure or evaluate student learning experiences. Data associated with variable Y may include the results of surveys, questionnaires, or observations that measure students' perceptions of the quality of their learning experience. 3. Students' Competences (Y) Instrument: It refers to tools or methods used to assess or measure students' competence in various areas, such as academic skills, practical skills, or social skills. Data associated with this Y variable may include test results, projects, or student portfolios that demonstrate their level of competency. 4. Learning Interaction Instrument (Y): It refers to the tools or methods used to study or evaluate interactions between students, between students and teachers, or between students and learning materials. Data associated with variable Y might include classroom observations, analysis of group discussions, or results of interactive evaluations in learning environments. 5. Teaching Strategies Instrument (Z): This refers to the tools or methods used by teachers to teach material to students. Data associated with variable Z may include information about the types of teaching strategies used, teaching evaluation methods, or students' responses to those strategies. Collecting data related to variables X, Y, and Z can help educational institutions to measure the effectiveness of curriculum transformation, understand student learning experiences, evaluate student competency levels, analyze interactions in the learning environment, and improve teaching strategies to improve learning outcomes. Analysis of this data can provide valuable insights for better curriculum development and improving the overall quality of education.
创建时间:
2024-04-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Fruits-360

一个高质量的水果图像数据集,包含多种水果的图像,如苹果、香蕉、樱桃等,总计42345张图片,分为训练集和验证集,共有64个水果类别。

github 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

Vehicle Energy Dataset (VED)

Vehicle Energy Dataset (VED)是由密歇根大学创建的一个大规模数据集,包含从2017年11月至2018年11月期间,在美国密歇根州安娜堡收集的383辆个人汽车的燃油和能量数据。该数据集捕捉了车辆的GPS轨迹以及燃油、能量、速度和辅助电源使用的时间序列数据。数据集中的车辆类型多样,包括264辆汽油车、92辆混合动力车和27辆插电式混合动力/电动车。VED数据集总里程约374,000英里,涵盖了从高速公路到交通密集的市中心区域等各种驾驶条件和季节。数据集创建过程中,研究团队通过安装在车辆上的OBD-II记录器收集数据,并对个人身份信息进行了去标识化处理,以保护参与者隐私。VED数据集的应用领域广泛,包括车辆能源消耗建模、驾驶员行为建模、机器学习和深度学习、交通模拟器的校准、最佳路线选择模型、人类驾驶员行为预测以及自动驾驶汽车的决策制定等。

arXiv 收录