five

Does Work-Integrated Curriculum Transformation Affect Learning Experience, Student Competencies, and Learning Interactions? The Role of Teaching Strategy Moderation

收藏
Mendeley Data2024-04-17 更新2024-06-26 收录
下载链接:
https://data.mendeley.com/datasets/pvxwffxnwh
下载链接
链接失效反馈
资源简介:
Explanation of data related to the transformation of the Work Integrated Curriculum (X), Learning Experience Instrument (Y), Students' Competences Instrument (Y), Learning Interaction Instrument (Y), and Teaching Strategies Instrument (Z) may be related to collection, analysis and use data in the context of curriculum development and educational evaluation. The following is an explanation of each variable: 1. Work Integrated Curriculum Transformation (X): It refers to the process or change in an educational curriculum that incorporates work experience or practice as an integral part of a student's learning. Data associated with variable 2. Learning Experience Instrument (Y): It includes tools or methods used to measure or evaluate student learning experiences. Data associated with variable Y may include the results of surveys, questionnaires, or observations that measure students' perceptions of the quality of their learning experience. 3. Students' Competences (Y) Instrument: It refers to tools or methods used to assess or measure students' competence in various areas, such as academic skills, practical skills, or social skills. Data associated with this Y variable may include test results, projects, or student portfolios that demonstrate their level of competency. 4. Learning Interaction Instrument (Y): It refers to the tools or methods used to study or evaluate interactions between students, between students and teachers, or between students and learning materials. Data associated with variable Y might include classroom observations, analysis of group discussions, or results of interactive evaluations in learning environments. 5. Teaching Strategies Instrument (Z): This refers to the tools or methods used by teachers to teach material to students. Data associated with variable Z may include information about the types of teaching strategies used, teaching evaluation methods, or students' responses to those strategies. Collecting data related to variables X, Y, and Z can help educational institutions to measure the effectiveness of curriculum transformation, understand student learning experiences, evaluate student competency levels, analyze interactions in the learning environment, and improve teaching strategies to improve learning outcomes. Analysis of this data can provide valuable insights for better curriculum development and improving the overall quality of education.
创建时间:
2024-04-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录