five

考選業務基金107年度決算|财务管理数据集|政府基金数据集

收藏
台湾省政府资料开放平台2023-10-23 更新2024-03-07 收录
财务管理
政府基金
下载链接:
https://data.gov.tw/dataset/100638
下载链接
链接失效反馈
资源简介:
考選業務基金107年度決算
提供机构:
考選部
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

resume-conversations-llm-training

这是一个高质量的职业对话数据集,适用于构建能够理解简历、职业和职业成长的AI。数据集以结构化的JSONL格式提供,包含关于职业发展、技术趋势和专业技能的现实问答,非常适合开发者和AI实践者用于聊天机器人、职业咨询工具或LLM微调。

huggingface 收录

danaroth/whu_hi

WHU-Hi数据集(武汉无人机载高光谱图像)由武汉大学RSIDEA研究组收集和共享,可作为精确作物分类和高光谱图像分类研究的基准数据集。该数据集包含三个独立的无人机载高光谱数据集:WHU-Hi-LongKou、WHU-Hi-HanChuan和WHU-Hi-HongHu,均在中国湖北省的农业区域采集。这些数据集通过安装在无人机平台上的Headwall Nano-Hyperspec传感器获取,具有高空间分辨率(H2图像)。数据集预处理包括辐射校准和几何校正,使用仪器制造商提供的HyperSpec软件进行处理。每个数据集都包含了详细的采集时间、天气条件、传感器信息、飞行高度、图像尺寸、波段数量和空间分辨率等信息,并提供了不同作物类别的样本数量。

hugging_face 收录

中国1千米分辨率逐日全天候地表土壤水分数据集(2003-2024)

(1、2025年5月19日对V2.0版本进行了最新更新,本次更新将数据集覆盖时段延伸至2024年年末。 2、2023年5月数据更新提示:本数据集的V2.0版本目前已经更新至2022年底,同时填补了2011年10月至2012年6月的空白时段,V2.0版本整体估算结果与V1.0原始版本相同,已下载的V1.0版本数据亦可放心使用,详情请参阅附件"2023年5月数据更新说明.pdf"。) 地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 cm3/cm3到0.056 cm3/cm3之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。

国家青藏高原科学数据中心 收录