five

Spatial Scaling Challenge. COST Action CA17134 SENSECO. Working Group 1

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/6451335
下载链接
链接失效反馈
资源简介:
This dataset contains the data, documentation, and scripts that compose the SPATIAL SCALING CHALLENGE organized in the framework of the SENSECO COST Action CA17143 “Optical synergies for spatiotemporal SENsing of Scalable ECOphysiological traits” (https://www.senseco.eu/), by the Working Group 1. “Closing the scaling gap: from leaf measurements to satellite images” (https://www.senseco.eu/working-groups/wg1-scaling-gap/). The SPATIAL SCALING CHALLENGE is an open exercise where we challenge the remote sensing community to retrieve relevant vegetation biophysical and physiological variables such as leaf chlorophyll content (Cab), leaf area index (LAI), maximal carboxylation rate (Vcmax,25), and non-photochemical quenching (NPQ) from simulated (hyperspectral reflectance (HDRF), sun-induced chlorophyll fluorescence (F) and land surface temperature (LST)) imagery. The dataset contains the simulated remote sensing and field data, their description, and scripts in Matlab, Python, and R languages to facilitate importing and handling the data and producing the standardized outputs necessary to participate. IMPORTANT: Additional data that can be used at the discretion of the participants have been released in https://doi.org/10.5281/zenodo.6530187 The SPATIAL SCALING CHALLENGE aims at gathering the community’s expertise and knowledge to tackle the scaling problems posed by variables of different nature. These experiences will be summarized in a journal article where all the participants are invited to contribute. The exercise is internationally open. Ph.D. students, early career and senior researchers, spin-offs, and companies working in the field of remote sensing of vegetation ecophysiology are welcome to participate. STILL OPEN FOR PARTICIPATION! New deadline 31st of October 2022. Follow all the communications and updates of the SPATIAL SCALING CHALLENGE in the RG site: https://www.researchgate.net/project/Spatial-Scaling-Challenge-COST-Action-CA17134-SENSECO-Working-Group-1.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PTB-Image

PTB-Image是一个包含扫描纸质心电图和相应数字信号的综合数据集,由越南河内VinUniversity College of Engineering and Computer Science和VinUni-Illinois Smart Health Center创建。该数据集旨在推动心电图数字化技术的研究,包含549个记录,每个记录由一位至五位患者的15个同步心电图信号组成,涵盖标准12导联心电图和Frank导联。数据集通过扫描原始PTB数据集的纸质心电图并打印部分信号制作而成,可用于心电图数字化、自动诊断及远程医疗等领域的应用研究。

arXiv 收录

Allen Brain Atlas

Allen Brain Atlas 是一个综合性的脑图谱数据库,提供了详细的大脑解剖结构、基因表达数据、神经元连接信息等。该数据集包括了小鼠、人类和其他模式生物的大脑数据,旨在帮助研究人员理解大脑的结构和功能。

portal.brain-map.org 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录