five

Spatial Scaling Challenge. COST Action CA17134 SENSECO. Working Group 1

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/6451335
下载链接
链接失效反馈
资源简介:
This dataset contains the data, documentation, and scripts that compose the SPATIAL SCALING CHALLENGE organized in the framework of the SENSECO COST Action CA17143 “Optical synergies for spatiotemporal SENsing of Scalable ECOphysiological traits” (https://www.senseco.eu/), by the Working Group 1. “Closing the scaling gap: from leaf measurements to satellite images” (https://www.senseco.eu/working-groups/wg1-scaling-gap/). The SPATIAL SCALING CHALLENGE is an open exercise where we challenge the remote sensing community to retrieve relevant vegetation biophysical and physiological variables such as leaf chlorophyll content (Cab), leaf area index (LAI), maximal carboxylation rate (Vcmax,25), and non-photochemical quenching (NPQ) from simulated (hyperspectral reflectance (HDRF), sun-induced chlorophyll fluorescence (F) and land surface temperature (LST)) imagery. The dataset contains the simulated remote sensing and field data, their description, and scripts in Matlab, Python, and R languages to facilitate importing and handling the data and producing the standardized outputs necessary to participate. IMPORTANT: Additional data that can be used at the discretion of the participants have been released in https://doi.org/10.5281/zenodo.6530187 The SPATIAL SCALING CHALLENGE aims at gathering the community’s expertise and knowledge to tackle the scaling problems posed by variables of different nature. These experiences will be summarized in a journal article where all the participants are invited to contribute. The exercise is internationally open. Ph.D. students, early career and senior researchers, spin-offs, and companies working in the field of remote sensing of vegetation ecophysiology are welcome to participate. STILL OPEN FOR PARTICIPATION! New deadline 31st of October 2022. Follow all the communications and updates of the SPATIAL SCALING CHALLENGE in the RG site: https://www.researchgate.net/project/Spatial-Scaling-Challenge-COST-Action-CA17134-SENSECO-Working-Group-1.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

danaroth/whu_hi

WHU-Hi数据集(武汉无人机载高光谱图像)由武汉大学RSIDEA研究组收集和共享,可作为精确作物分类和高光谱图像分类研究的基准数据集。该数据集包含三个独立的无人机载高光谱数据集:WHU-Hi-LongKou、WHU-Hi-HanChuan和WHU-Hi-HongHu,均在中国湖北省的农业区域采集。这些数据集通过安装在无人机平台上的Headwall Nano-Hyperspec传感器获取,具有高空间分辨率(H2图像)。数据集预处理包括辐射校准和几何校正,使用仪器制造商提供的HyperSpec软件进行处理。每个数据集都包含了详细的采集时间、天气条件、传感器信息、飞行高度、图像尺寸、波段数量和空间分辨率等信息,并提供了不同作物类别的样本数量。

hugging_face 收录