five

Spatial Scaling Challenge. COST Action CA17134 SENSECO. Working Group 1

收藏
Mendeley Data2024-05-10 更新2024-06-27 收录
下载链接:
https://zenodo.org/records/6451335
下载链接
链接失效反馈
资源简介:
This dataset contains the data, documentation, and scripts that compose the SPATIAL SCALING CHALLENGE organized in the framework of the SENSECO COST Action CA17143 “Optical synergies for spatiotemporal SENsing of Scalable ECOphysiological traits” (https://www.senseco.eu/), by the Working Group 1. “Closing the scaling gap: from leaf measurements to satellite images” (https://www.senseco.eu/working-groups/wg1-scaling-gap/). The SPATIAL SCALING CHALLENGE is an open exercise where we challenge the remote sensing community to retrieve relevant vegetation biophysical and physiological variables such as leaf chlorophyll content (Cab), leaf area index (LAI), maximal carboxylation rate (Vcmax,25), and non-photochemical quenching (NPQ) from simulated (hyperspectral reflectance (HDRF), sun-induced chlorophyll fluorescence (F) and land surface temperature (LST)) imagery. The dataset contains the simulated remote sensing and field data, their description, and scripts in Matlab, Python, and R languages to facilitate importing and handling the data and producing the standardized outputs necessary to participate. IMPORTANT: Additional data that can be used at the discretion of the participants have been released in https://doi.org/10.5281/zenodo.6530187 The SPATIAL SCALING CHALLENGE aims at gathering the community’s expertise and knowledge to tackle the scaling problems posed by variables of different nature. These experiences will be summarized in a journal article where all the participants are invited to contribute. The exercise is internationally open. Ph.D. students, early career and senior researchers, spin-offs, and companies working in the field of remote sensing of vegetation ecophysiology are welcome to participate. STILL OPEN FOR PARTICIPATION! New deadline 31st of October 2022. Follow all the communications and updates of the SPATIAL SCALING CHALLENGE in the RG site: https://www.researchgate.net/project/Spatial-Scaling-Challenge-COST-Action-CA17134-SENSECO-Working-Group-1.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

UCF-Crime

UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。

OpenDataLab 收录

CampusGuard

CampusGuard数据集专门针对校园环境中的学生行为进行标注与分类,旨在为改进YOLOv8模型提供丰富的训练样本。该数据集包含五个主要类别,分别是“使用手机”、“未佩戴头盔”、“睡觉”、“三人组行为”和“暴力行为”。这些类别不仅涵盖了课堂内外的常见行为,还反映了校园安全与学生行为管理的多样性。

github 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录