five

PAMAP2 Physical Activity Monitoring Dataset|人体活动监测数据集|传感器数据数据集

收藏
archive.ics.uci.edu2024-10-26 收录
人体活动监测
传感器数据
下载链接:
http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
下载链接
链接失效反馈
资源简介:
PAMAP2 Physical Activity Monitoring Dataset 是一个用于监测人体活动的数据集,包含来自9名受试者的传感器数据,记录了他们在进行不同活动时的身体运动情况。数据集包括心率、加速度、陀螺仪和磁力计等多种传感器的数据,涵盖了18种不同的活动类型。
提供机构:
archive.ics.uci.edu
AI搜集汇总
数据集介绍
main_image_url
构建方式
PAMAP2 Physical Activity Monitoring Dataset的构建基于对18名受试者在日常活动中的多传感器数据采集。该数据集通过佩戴在受试者手腕、胸部和脚踝上的三个IMU(惯性测量单元)传感器,实时记录了包括加速度、角速度和心率在内的多种生理和运动参数。数据采集过程涵盖了多种活动类型,如步行、跑步、骑自行车等,以确保数据的多样性和代表性。
特点
PAMAP2数据集的显著特点在于其高精度和多维度的数据记录。每个传感器每10毫秒记录一次数据,确保了时间序列的连续性和准确性。此外,数据集包含了9种不同的活动类型,涵盖了从静态到动态的广泛活动范围,为研究人体运动模式和行为分析提供了丰富的数据资源。
使用方法
PAMAP2数据集适用于多种研究领域,包括人体运动分析、健康监测和行为识别。研究者可以通过分析传感器数据,提取特征并构建模型,以识别和分类不同的活动类型。此外,该数据集还可用于开发和验证基于传感器的人体活动监测系统,为个性化健康管理和运动指导提供数据支持。
背景与挑战
背景概述
PAMAP2 Physical Activity Monitoring Dataset,由苏黎世联邦理工学院(ETH Zurich)的研究团队于2012年发布,旨在推动可穿戴设备在健康监测和运动分析领域的应用。该数据集收集了九名受试者在进行日常活动和特定运动时的多传感器数据,包括加速度计、陀螺仪和心率监测器等。通过这些数据,研究者能够深入分析人体运动模式,为个性化健康管理、运动康复和智能穿戴设备的设计提供科学依据。PAMAP2的发布极大地促进了相关领域的研究进展,成为评估和开发新型运动监测算法的重要基准。
当前挑战
PAMAP2数据集在构建过程中面临多项挑战。首先,多传感器数据的同步采集和处理要求高精度的硬件和复杂的算法支持,以确保数据的准确性和一致性。其次,受试者在自由活动状态下产生的数据具有高度的动态性和复杂性,如何从中提取有意义的特征并进行分类是一个技术难题。此外,数据集的标注工作也极具挑战性,需要专业人员对每项活动进行细致的分类和标记,以确保后续研究的可靠性。这些挑战不仅考验了数据处理技术,也推动了相关领域算法的创新与发展。
发展历史
创建时间与更新
PAMAP2 Physical Activity Monitoring Dataset于2012年首次发布,旨在提供一个标准化的数据集以促进人体活动监测技术的研究。该数据集在发布后未有官方更新记录,但其持续被广泛引用和使用,显示出其在该领域的持久影响力。
重要里程碑
PAMAP2数据集的发布标志着人体活动监测领域的一个重要里程碑。它包含了来自9名受试者的多传感器数据,涵盖了多种日常活动,如步行、跑步和骑自行车等。这一数据集的多样性和详细性极大地推动了相关算法的发展,尤其是在活动识别和行为分析方面。此外,PAMAP2的开放获取政策促进了全球研究者的广泛参与,加速了该领域的技术进步和创新。
当前发展情况
当前,PAMAP2数据集仍然是人体活动监测研究中的重要资源。尽管已有新的数据集陆续发布,PAMAP2因其数据质量和多样性,依然被广泛用于算法验证和模型训练。其在学术界和工业界的持续应用,证明了其对推动智能穿戴设备和健康监测技术发展的关键作用。此外,PAMAP2的成功也激励了更多高质量数据集的创建,进一步丰富了该领域的研究资源。
发展历程
  • PAMAP2 Physical Activity Monitoring Dataset首次发表,由研究人员Andreas Bulling、Jakob Waibel和Bernt Schiele等人创建,旨在通过多传感器数据监测和分类人体活动。
    2012年
  • 该数据集首次应用于学术研究,特别是在人体活动识别和传感器数据分析领域,成为相关研究的重要基准数据集。
    2013年
  • PAMAP2数据集在多个国际会议和期刊上被广泛引用,推动了基于传感器的人体活动监测技术的发展。
    2015年
  • 随着深度学习技术的兴起,PAMAP2数据集被用于验证和改进深度学习模型在人体活动识别中的应用。
    2018年
  • 该数据集继续在健康监测和智能穿戴设备领域发挥重要作用,支持了多项跨学科研究项目。
    2020年
常用场景
经典使用场景
在健康与运动科学领域,PAMAP2物理活动监测数据集被广泛用于分析和预测人体活动模式。该数据集通过穿戴式传感器收集了多种日常活动和运动的数据,包括步行、跑步、骑自行车等。研究者利用这些数据进行机器学习模型的训练,以实现对不同活动类型的自动识别和分类。
衍生相关工作
基于PAMAP2数据集,研究者们开发了多种创新算法和模型,如基于卷积神经网络(CNN)的活动识别模型和基于长短期记忆网络(LSTM)的时间序列预测模型。这些工作不仅在学术界引起了广泛关注,也在工业界得到了实际应用。此外,PAMAP2数据集还激发了其他相关数据集的创建,进一步推动了穿戴式设备和健康监测技术的发展。
数据集最近研究
最新研究方向
在健康监测与行为分析领域,PAMAP2 Physical Activity Monitoring Dataset 近期研究聚焦于通过多传感器数据融合技术,提升对复杂人体活动的识别精度。研究者们致力于开发更为精细的模型,以区分不同强度的运动类型,从而为个性化健康管理提供更精准的数据支持。此外,该数据集还被广泛应用于评估新型可穿戴设备的性能,推动了智能健康监测技术的创新与发展。
相关研究论文
  • 1
    A New Baseline for Activity Recognition Using Inertial SensorsUniversity of Augsburg · 2012年
  • 2
    Deep Learning for Human Activity Recognition: A Resource Efficient Implementation in TensorFlowUniversity of California, Irvine · 2017年
  • 3
    Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural NetworksUniversity of California, San Diego · 2016年
  • 4
    A Survey on Human Activity Recognition Using Wearable SensorsUniversity of California, Irvine · 2013年
  • 5
    Human Activity Recognition Using Smartphones DatasetUniversity of California, Irvine · 2012年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国行政区划shp数据

   中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。   中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。

CnOpenData 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录