five

IMU raw and processed data for computing human joint angles

收藏
Mendeley Data2024-03-27 更新2024-06-29 收录
下载链接:
https://ieee-dataport.org/open-access/imu-raw-and-processed-data-computing-human-joint-angles
下载链接
链接失效反馈
资源简介:
The goal of this study was to compute the relative angle of human joints such as the knee flex/extension angle using two IMUs. To do so, we utilized two 6-axis (accelerometer, gyroscope) low-cost IMUs (MPU6050, TDK-Invensense, CA, USA) that were mounted on a custom developed test apparatus that replicated the human knee motion. The custom test apparatus contained a single motor that repeatedly rotated one of the IMUs from 0 ~ 180 degrees at a one of three predefined speeds (slow - max speed of 25 deg/s, medium - max speed of 100 deg/s, fast = max speed of 200 deg/s) about one of the three rotation axes (yaw - rotation about gravity vector, pitch - rotation orthogonal to yaw and roll, roll - rotation orthogonal to yaw and pitch) for 25 minutes. One IMU was stationary and mounted securely on the side of the test apparatus while the other IMU was mounted on the motor axis and rotated about the motor-axis. The motor speed could be programmed via a microcontroller. The rotation axis could be changed by re-configuring the orientation of the IMUs. An optical encoder, which was placed on the motor shaft, was used to measure the true rotated angle. As the test apparatus rotated the IMU, raw accelerometer and gyroscopic data from the two IMUs as well as the encoder data were collected using a microcontroller. Five computational algorithms (i.e., accelerometer inclination angle, gyroscopic integration, Complementary Filter, Kalman Filter, Digital Motion Processing) IMU data were used (see https://github.com/ssong47/get_joint_angles_using_imus) to calculated the relative angle between the two IMUs. These computed angles were compared to the gold standard (i.e., encoder angle). A total of 9 trials were collected = three rotation axes (yaw, pitch, roll) x three speeds (slow, medium, fast). Each trial contained two phases: 1) a short calibration phase where the IMUs were stationary and placed such that the origins were parallel to each other, and 2) test phase when the one of the IMUs started to move at the pre-defined speed and rotation axis.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

UAVDT

UAVDT数据集由中国科学院大学等机构创建,包含约80,000帧从10小时无人机拍摄视频中精选的图像,覆盖多种复杂城市环境。数据集主要关注车辆目标,每帧均标注了边界框及多达14种属性,如天气条件、飞行高度、相机视角等。该数据集旨在推动无人机视觉技术在不受限制场景下的研究,解决高密度、小目标、相机运动等挑战,适用于物体检测、单目标跟踪和多目标跟踪等基础视觉任务。

arXiv 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录