Voxel51/DanceTrack|多目标跟踪数据集|计算机视觉数据集
收藏数据集概述
基本信息
- 数据集名称: DanceTrack
- 语言: 英语
- 许可证: CC BY 4.0
数据集描述
DanceTrack 是一个多人跟踪数据集,具有以下两个主要特点:
- 均匀外观: 人类具有高度相似且几乎无法区分的外观。
- 多样运动: 人类具有复杂的运动模式,并且他们的相对位置频繁交换。
该数据集旨在鼓励开发更全面和智能的多目标跟踪算法,特别是在目标外观不足以进行视觉区分时,依赖于运动分析的算法。
数据集详情
- 样本数量: 33个样本
- 数据集来源:
- 仓库: https://dancetrack.github.io/
- 论文: https://arxiv.org/abs/2111.14690
- 演示: https://dancetrack.github.io/
使用场景
该数据集适用于计算机视觉中的跟踪用例,是一个常见的基准数据集。
引用
@inproceedings{sun2022dance, title={DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion}, author={Sun, Peize and Cao, Jinkun and Jiang, Yi and Yuan, Zehuan and Bai, Song and Kitani, Kris and Luo, Ping}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022} }

AIS数据集
该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。
github 收录
中国近海地形数据集(渤海,黄海,东海,南海)
本数据集包含历年来通过收集和实测方法取得的中国近海水深点数据、地形图数据(ArcGIS格式),以及黄河口、莱州湾东部、辽东湾、山东南部沿海、南海部分海域的单波束、多波束水深测量数据,包括大尺度的低密度水深数据与局部高密度水深数据。
地球大数据科学工程 收录
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
AgiBot World
为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。
github 收录
Plant-Diseases
Dataset for Plant Diseases containg variours Plant Disease
kaggle 收录
