five

A novel spatial prediction method integrating Exploratory Spatial Data Analysis into Random Forest for large scale daily air temperature mapping

收藏
DataCite Commons2025-03-19 更新2025-04-16 收录
下载链接:
https://ieee-dataport.org/documents/novel-spatial-prediction-method-integrating-exploratory-spatial-data-analysis-random
下载链接
链接失效反馈
资源简介:
Accurately predicting spatially-continuous daily air temperature (Ta) is critical for agriculture, environmental management, and ecology. While meteorological stations provide precise Ta data, their spatial coverage is limited. Remotely-sensed Land Surface Temperature (LST), often fused with meteorological data, offers broader spatial coverage but struggles due to complex relationships between Ta and LST, influenced by factors like topography and human activities. Traditional supervised learning methods often fail to capture the spatial autocorrelation and heterogeneity inherent in the relationships, indicating the need for a more robust approach that integrates geographic knowledge. This study proposes the Spatially-Varying Coefficients Random Forest (SVCRF) model, to integrate Exploratory Spatial Data Analysis (ESDA) into Random Forest(RF) to capture spatially non-stationary relationships. It first stratifies the study area based on bivariate Local Indicators of Spatial Association and geographical detector,then builds several spatial RFs with specific spatial position and extent. In each spatial RF, the distance from observation/prediction sites to its position are added as a key predictor variable, to model the local spatial variations of the relationships within the spatial extent. Applied to daily Ta mapping at 1 km resolution across China using data from 5,425 meteorological stations, the SVCRF model demonstrated superior accuracy, achieving RMSE of 1.315 °C and MAE of 1.014 °C. Compared to RF, regression kriging, and geographically weighted regression, it reduced MAE by 0.351 °C, 0.786 °C, and 0.831 °C, respectively. The model also offers high interpretability, with uncertainty estimates aligning with actual errors and spatially-resolved variable importance highlighting spatial patterns.
提供机构:
IEEE DataPort
创建时间:
2025-03-19
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

RadDet

RadDet是一个包含11种雷达类别的数据集,包括6种新的低概率干扰(LPI)多相码(P1, P2, P3, P4, Px, Zadoff-Chu)和一种新的宽带调频连续波(FMCW)。数据集覆盖500 MHz频段,包含40,000个雷达帧,分为训练集、验证集和测试集。数据集在两种不同的雷达环境中提供:稀疏数据集(RadDet-1T)和密集数据集(RadDet-9T)。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录