five

Supporting Data and Software for the paper: Do travelling academics put their money where their mouth is? Exploring environmental considerations and mode choices for conference travel|环境考虑数据集|交通方式选择数据集

收藏
DataCite Commons2022-11-17 更新2024-07-03 收录
环境考虑
交通方式选择
下载链接:
https://data.4tu.nl/articles/_/21207269/2
下载链接
链接失效反馈
资源简介:
Do travelling academics put their money where their mouth is? Supporting Data and Software <br> This data package contains survey files and responses associated with the following paper: Cats, O., Pudāne, B., van der Poel, J., Kroesen, M. (2022). Do travelling academics put their money where their mouth is? Exploring environmental considerations and mode choices for conference travel. <br> This dataset contains data from a survey that recorded academics' attitudes towards online conferences, flight shame and carbon offsetting. It also contains their travel choices in hypothetical international conference travel situations - would they make the trip, and if yes, would they choose plane or train? Finally, there is a record of respondents' socio-demographic characteristics and their past and expected future conference travel. The data come from a convenience sample of 104 academics in Europe. <br> In this package you will find: Raw data --&gt; Survey_data_Raw.xlsx Data formatted for (discrete choice) estimations, including a codebook --&gt; Survey_data_Formatted.xlsx Data formatted for (discrete choice) estimations --&gt; Survey_data_Formatted.dat Experimental design of the discrete choice tasks --&gt; Experimental_design.xlsx Biogeme Pandas code used to estimate the model --&gt; MNL_code_pandas_final.py Output from Biogeme --&gt; MNL_model.html Processed Biogeme output to obtain the relative importance of attributes --&gt; Relative_importance_attributes.xlsx Summary of the attitudinal statements --&gt; Attitude_data.xlsx Screenshots of the survey --&gt; Screenshots of the survey introduction and choice task.docx <br> You can find the complete survey tool here: https://forms.gle/DkkC4obAAscA8fGc7 <br>
提供机构:
4TU.ResearchData
创建时间:
2022-09-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录