five

汕尾市海丰县档案局统一申办受理平台受理信息|政务服务数据集|数据管理数据集

收藏
开放广东2025-10-01 更新2024-02-29 收录
政务服务
数据管理
下载链接:
https://gddata.gd.gov.cn/opdata/base/collect?chooseValue=collectForm
下载链接
链接失效反馈
资源简介:
该信息为2022年广东省汕尾市海丰县政务服务中心办事大厅综合应用系统办件受理信息,可以提供给各业务系统,实现系统对接,数据同步、减少二次录入、为即审、即办的工作提供数据依据;主要包含办件编号、申办流水号、基本编码、地方基本编码、实施编码、地方实施编码、业务办理项编码等。
提供机构:
汕尾市
创建时间:
2023-02-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MeSH

MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。

www.nlm.nih.gov 收录

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

BETA dataset

BETA数据集来自清华大学,是一个大型基准数据库,旨在支持SSVEP-BCI应用的研究。

github 收录

Data From NSCLC-Radiomics

This collection contains images from 422 non-small cell lung cancer (NSCLC) patients. For these patients pretreatment CT scans, manual delineation by a radiation oncologist of the 3D volume of the gross tumor volume and clinical outcome data are available. This dataset refers to the Lung1 dataset of the study published in Nature Communications. In short, this publication applies a radiomic approach to computed tomography data of 1,019 patients with lung or head-and-neck cancer. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. In present analysis 440 features quantifying tumour image intensity, shape and texture, were extracted. We found that a large number of radiomic features have prognostic power in independent data sets, many of which were not identified as significant before. Radiogenomics analysis revealed that a prognostic radiomic signature, capturing intra-tumour heterogeneity, was associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. The dataset described here (Lung1) was used to build a prognostic radiomic signature. The Lung3 dataset used to investigate the association of radiomic imaging features with gene-expression profiles consisting of 89 NSCLC CT scans with outcome data can be found here: NSCLC-Radiomics-Genomics. For scientific inquiries about this dataset, please contact Dr. Hugo Aerts of the Dana-Farber Cancer Institute / Harvard Medical School (hugo_aerts@dfci.harvard.edu). More Description

DataCite Commons 收录