Kvasir-SEG|医学图像处理数据集|图像分割数据集
收藏
- Kvasir-SEG数据集首次发表,包含1000张标注的内窥镜图像,主要用于胃肠道疾病的分割研究。
- Kvasir-SEG数据集首次应用于医学图像处理领域,特别是在深度学习算法中用于胃肠道病变检测和分割。
- Kvasir-SEG数据集被广泛用于多个国际会议和研讨会,成为胃肠道图像分析的标准数据集之一。
- Kvasir-SEG数据集的扩展版本发布,增加了图像数量和多样性,进一步提升了其在医学图像分析中的应用价值。
- Kvasir-SEG数据集被多个研究团队用于开发新的深度学习模型,显著提高了胃肠道疾病的诊断准确率。
- 1Kvasir-SEG: A Segmented Polyp DatasetNTNU, Norway · 2020年
- 2Polyp Segmentation with Enhanced U-Net Model Using Kvasir-SEG DatasetUniversity of Tabuk, Saudi Arabia · 2021年
- 3A Comprehensive Study on Polyp Segmentation with Kvasir-SEG DatasetUniversity of Malaya, Malaysia · 2022年
- 4Deep Learning Approaches for Polyp Segmentation Using Kvasir-SEG DatasetUniversity of Ljubljana, Slovenia · 2021年
- 5Transfer Learning for Polyp Segmentation Using Kvasir-SEG DatasetUniversity of Porto, Portugal · 2022年
光伏电站发电量预估数据
1、准确预测一个地区分布式光伏场站的整体输出功率,可以提高电网的稳定性,增加电网消纳光电能量的能力,在降低能源消耗成本的同时促进低碳能源发展,实现动态供需状态预测的方法,为绿色电力源网荷储的应用落地提供支持。 2、准确预估光伏电站发电量,可以自动发现一些有故障的设备或者低效电站,提升发电效能。1、逆变器及电站数据采集,将逆变器中计算累计发电量数据,告警数据同步到Maxcompute大数据平台 2、天气数据采集, 通过API获取ERA5气象数据包括光照辐射、云量、温度、湿度等 3、数据特征构建, 在大数据处理平台进行数据预处理,用累计发电量矫正小时平均发电功率,剔除异常数据、归一化。告警次数等指标计算 4、异常数据处理, 天气、设备数据根据经纬度信息进行融合, 并对融合后的数据进行二次预处理操作,剔除辐照度和发电异常的一些数据 5、算法模型训练,基于XGBoost算法模型对历史数据进行训练, 生成训练集并保存至OSS 6、算法模型预测,基于XGBoost算法模型接入OSS训练集对增量数据进行预测, 并评估预测准确率等效果数据,其中误差率=(发电量-预估发电量)/发电量,当误差率低于一定阈值时,该数据预测为准确。预测准确率=预测准确数量/预测数据总量。
浙江省数据知识产权登记平台 收录
中国1km分辨率逐月降水量数据集(1901-2023)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
FER2013
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。
github 收录
猫狗图像数据集
该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。
github 收录