five

P2C-COD, T-COD|伪装物体检测数据集|弱监督学习数据集

收藏
arXiv2025-01-10 更新2025-01-14 收录
伪装物体检测
弱监督学习
下载链接:
http://arxiv.org/abs/2501.06038v1
下载链接
链接失效反馈
资源简介:
P2C-COD和T-COD是由复旦大学计算机科学与技术学院开发的两个新型数据集,旨在支持弱监督伪装物体检测(WSCOD)任务。P2C-COD是一个点监督数据集,通过点标注提供精确的物体位置信息,而T-COD则是一个文本监督数据集,利用文本提示标签生成伪掩码。这两个数据集结合了点标注和文本提示的优势,能够生成高质量的伪标签,用于训练弱监督模型。数据集的应用领域包括野生动物保护、医学图像分割、战场敌情检测等,旨在解决伪装物体检测中的复杂视觉模式识别问题。
提供机构:
复旦大学计算机科学与技术学院,上海智能信息处理重点实验室;复旦大学义乌研究院
创建时间:
2025-01-10
AI搜集汇总
数据集介绍
main_image_url
构建方式
P2C-COD和T-COD数据集的构建基于弱监督学习框架,旨在通过点标注和文本提示标签检测伪装物体。P2C-COD数据集通过随机选择每个伪装物体的一个像素进行标注,简化了标注过程,使得即使是未经验证的标注者也能在1至2秒内完成一张图像的标注。T-COD数据集则专注于识别图像中伪装物体的类型,标注过程耗时约一小时。这两个数据集均基于广泛认可的CAMO和COD10K伪装物体检测训练数据集进行重新标注,确保了数据的多样性和代表性。
特点
P2C-COD和T-COD数据集的特点在于其弱监督标注方式,显著减少了标注成本和时间。P2C-COD通过单点标注提供了精确的物体位置信息,而T-COD则通过文本提示标签提供了语义信息。这种双路径监督方式不仅提高了标注效率,还为模型训练提供了丰富的上下文信息。此外,数据集的构建充分利用了SAM、Grounding DINO和CLIP等基础模型,确保了生成的高质量伪标签能够有效支持模型的训练和优化。
使用方法
P2C-COD和T-COD数据集的使用方法分为三个阶段:分割、选择和训练。在分割阶段,利用点标注和文本提示生成候选掩码;在选择阶段,通过CLIP模型选择最可靠的掩码作为伪标签;在训练阶段,使用自监督的Vision Transformer对选定的伪标签进行训练。这种分阶段的框架不仅提高了伪标签的质量,还显著提升了模型在伪装物体检测任务中的性能。通过结合点标注和文本提示的优势,该框架在多个基准数据集上均表现出色,缩小了弱监督与全监督方法之间的性能差距。
背景与挑战
背景概述
P2C-COD和T-COD数据集是由复旦大学计算机科学与技术学院的研究团队于2025年提出的,旨在解决弱监督伪装目标检测(WSCOD)问题。该数据集通过点标注和文本提示标签的结合,提供了一种新颖的弱监督学习框架,能够在减少标注成本的同时,提升模型对伪装目标的检测能力。P2C-COD数据集采用点标注方式,每个伪装目标仅标注一个像素点,而T-COD数据集则通过文本提示标签来描述图像中的伪装目标。这一研究在计算机视觉领域具有重要意义,尤其是在野生动物保护、医学图像分割、军事侦察等实际应用中,能够有效提升伪装目标的检测精度。
当前挑战
P2C-COD和T-COD数据集在构建和应用过程中面临多重挑战。首先,伪装目标与背景的高度相似性使得检测任务极为复杂,传统的图像分割方法难以准确区分目标与背景。其次,弱监督学习依赖于稀疏标注,如何从有限的点标注或文本提示中生成高质量的伪标签是一个关键问题。在数据集构建过程中,点标注的稀疏性可能导致模型难以捕捉目标的完整结构,而文本提示的模糊性则可能引入噪声,影响模型的训练效果。此外,如何有效结合点标注和文本提示,生成可靠的伪标签,并在训练过程中动态修正错误,也是该数据集面临的主要技术挑战。
常用场景
经典使用场景
P2C-COD和T-COD数据集主要用于弱监督伪装目标检测(WSCOD)任务。这些数据集通过点标注和文本提示标签的结合,提供了一种新颖的框架,能够在缺乏密集像素级标注的情况下,生成高质量的伪标签。经典使用场景包括在复杂背景中检测伪装目标,例如野生动物保护、医学图像分割、战场敌情侦察等领域。通过点标注和文本提示的协同作用,模型能够在背景与目标高度相似的情况下,精确地分割出伪装目标。
解决学术问题
P2C-COD和T-COD数据集解决了弱监督学习中的关键问题,即如何在缺乏密集标注的情况下,生成高质量的伪标签用于模型训练。传统的伪装目标检测方法依赖于大量像素级标注,标注过程耗时且成本高昂。通过引入点标注和文本提示,该数据集显著减少了标注成本,同时提升了模型的检测精度。此外,该数据集还解决了多模态信息融合的难题,通过点标注和文本提示的互补性,提升了模型在复杂场景下的鲁棒性。
衍生相关工作
P2C-COD和T-COD数据集的提出,推动了弱监督伪装目标检测领域的研究进展。基于该数据集,研究者们开发了多种创新方法,如点引导候选生成(PCG)和合格候选判别器(QCD),这些方法显著提升了模型的性能。此外,该数据集还促进了多模态信息融合技术的发展,推动了SAM、Grounding DINO和CLIP等基础模型在伪装目标检测中的应用。相关研究不仅在学术界引起了广泛关注,还为工业界的实际应用提供了新的解决方案。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Population and Housing Census of 2007 - Ethiopia

Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Household Person Housing unit Universe --------------------------- The census has counted people on dejure and defacto basis. The dejure population comprises all the persons who belong to a given area at a given time by virtue of usual residence, while under defacto approach people were counted as the residents of the place where they found. In the census, a person is said to be a usual resident of a household (and hence an area) if he/she has been residing in the household continuously for at least six months before the census day or intends to reside in the household for six months or longer. Thus, visitors are not included with the usual (dejure) population. Homeless persons were enumerated in the place where they spent the night on the enumeration day. The 2007 census counted foreign nationals who were residing in the city administration. On the other hand all Ethiopians living abroad were not counted. Kind of data --------------------------- Census/enumeration data [cen] Mode of data collection --------------------------- Face-to-face [f2f] Research instrument --------------------------- Two type sof questionnaires were used to collect census data: i) Short questionnaire ii) Long questionnaire Unlike the previous censuses, the contents of the short and long questionnaires were similar both for the urban and rural areas as well as for the entire city. But the short and the long questionnaires differ by the number of variables they contained. That is, the short questionnaire was used to collect basic data on population characteristics, such as population size, sex, age, language, ethnic group, religion, orphanhood and disability. Whereas the long questionnaire includes information on marital status, education, economic activity, migration, fertility, mortality, as well as housing stocks and conditions in addition to those questions contained in a short questionnaire.

catalog.ihsn.org 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录