five

NASICON-type solid electrolyte materials named entity recognition dataset|材料科学数据集|实体识别数据集

收藏
DataCite Commons2025-04-27 更新2025-05-18 收录
材料科学
实体识别
下载链接:
https://www.scidb.cn/detail?dataSetId=15841dbe0b09441bba90a95da96cd11c
下载链接
链接失效反馈
资源简介:
1.Framework overview.This paper proposed a pipeline to construct high-quality datasets for text mining in materials science. Firstly, we utilize the traceable automatic acquisition scheme of literature to ensure the traceability of textual data. Then, a data processing method driven by downstream tasks is performed to generate high-quality pre-annotated corpora conditioned on the characteristics of materials texts. On this basis, we define a general annotation scheme derived from materials science tetrahedron to complete high-quality annotation. Finally, a conditional data augmentation model incorporating materials domain knowledge (cDA-DK) is constructed to augment the data quantity.2.Dataset information.The experimental datasets used in this paper include: the Matscholar dataset publicly published by Weston et al. (DOI: 10.1021/acs.jcim.9b00470), and the NASICON entity recognition dataset constructed by ourselves. Herein, we mainly introduce the details of NASICON entity recognition dataset.2.1 Data collection and preprocessing.Firstly, 55 materials science literature related to NASICON system are collected through Crystallographic Information File (CIF), which contains a wealth of structure-activity relationship information. Note that materials science literature is mostly stored as portable document format (PDF), with content arranged in columns and mixed with tables, images, and formulas, which significantly compromises the readability of the text sequence. To tackle this issue, we employ the text parser PDFMiner (a Python toolkit) to standardize, segment, and parse the original documents, thereby converting PDF literature into plain text. In this process, the entire textual information of literature, encompassing title, author, abstract, keywords, institution, publisher, and publication year, is retained and stored as a unified TXT document. Subsequently, we apply rules based on Python regular expressions to remove redundant information, such as garbled characters and line breaks caused by figures, tables, and formulas. This results in a cleaner text corpus, enhancing its readability and enabling more efficient data analysis. Note that special symbols may also appear as garbled characters, but we refrain from directly deleting them, as they may contain valuable information such as chemical units. Therefore, we converted all such symbols to a special token <sYm>. Moreover, numerical and terminological abbreviations are also retained, as they can greatly aid in the extraction of knowledge from materials science literature. Finally, the abstract and main text are processed as inputs for subsequent stages, while the metadata such as the title, authors, and references are stored in a database to ensure the traceability of literature source.2.2 Tokenization and labeling.ChemDataExtractor, a chemical natural language processing toolkit, is firstly employed for splitting segments of materials articles into sentences and tokenizing each sentence into individual tokens. Then, for labeling these tokens, eight entity tags of descriptor including Composition, Structure, Property, Processing, Characterization, Application, Feature, and Condition are defined, of which corresponding descriptions and examples are shown in Table S1. Based on the aforementioned definitions, 55 materials science literature are manually annotated by three materials scientists through the EasyData toolkit. To ensure the effectiveness and consistency of the annotations, data labeled by each annotator underwent a joint review by two others.2.3 The details of dataset file.NASICON entity recognition dataset contains 2343 sentences (samples) in total 4857 entities (labels). Note that different sentences are separated by blank lines in the dataset file (nasicon_ner_org.csv). There are three columns in the file:(1) Words: the word lists obtained by splitting sentences with spaces;(2) POS tag: the lists of part-of-speech tagging for each word using NLTK toolkit;(3) Entity tag: the lists of manual annotation based on the eight pre-defined entity types, including the BIO tag.For example, the tags for “B(B’)O6 octahedra” in the file include {“B(B’)O6”, NNP, B-Structure}, {“octahedra”, NN, I-Structure}. Among them, “NNP” and “NN” respectively represent parts of speech, “B-Structure” represents the tag of begin token of entity, and “I-Structure” represents the tags of inside tokens of entity. More details of this dataset are presented in the main text.3.Citation.Please cite our papers related to our NASICON entity recognition dataset if it is helpful to your research:(1) Liu Y, Ge X Y, Yang Z W, Sun S Y, Liu D H, Avdeev M, Shi S Q. An automatic descriptors recognizer customized for materials science literature[J]. J. Power Sources, 2022, 545: 231946.(2) Liu Y, Liu D H, Ge X Y, Yang Z W, Ma S C, Zou Z Y, Shi S Q. A high-quality dataset construction method for text mining in materials science[J]. Acta Phys. Sin., 2023, 72(7): 070701. (in Chinese) [刘悦, 刘大晖, 葛献远, 杨正伟, 马舒畅, 邹喆乂, 施思齐. 高质量的材料科学文本挖掘数据集构建方法[J]. 物理学报, 2023, 72(7): 070701.]
提供机构:
Science Data Bank
创建时间:
2023-04-27
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

Chinese-Poetry-Corpus

本语料库收集自互联网,包含了从先秦到当代的古诗词数据,以CSV格式进行存储。经过去重后,包含诗词共计1014508首。古诗词按朝代进行划分,存储于文件夹下,命名规则为朝代.csv。每首诗词数据包含五个字段,分别为标题、朝代、作者、体裁、内容。

github 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录