five

daytoy-models/coronary-artery|代码生成数据集|文本生成数据集

收藏
hugging_face2024-01-22 更新2024-03-04 收录
代码生成
文本生成
下载链接:
https://hf-mirror.com/datasets/daytoy-models/coronary-artery
下载链接
链接失效反馈
资源简介:
--- pipeline_tag: text-generation language: - 'no' - aa inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - code model-index: - name: StarCoder results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval (Prompted) metrics: - name: pass@1 type: pass@1 value: 0.408 verified: false - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.336 verified: false - task: type: text-generation dataset: type: mbpp name: MBPP metrics: - name: pass@1 type: pass@1 value: 0.527 verified: false - task: type: text-generation dataset: type: ds1000 name: DS-1000 (Overall Completion) metrics: - name: pass@1 type: pass@1 value: 0.26 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 0.3155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C#) metrics: - name: pass@1 type: pass@1 value: 0.2101 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (D) metrics: - name: pass@1 type: pass@1 value: 0.1357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Go) metrics: - name: pass@1 type: pass@1 value: 0.1761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 0.3022 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Julia) metrics: - name: pass@1 type: pass@1 value: 0.2302 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 0.3079 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Lua) metrics: - name: pass@1 type: pass@1 value: 0.2389 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 0.2608 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Perl) metrics: - name: pass@1 type: pass@1 value: 0.1734 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 0.3357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (R) metrics: - name: pass@1 type: pass@1 value: 0.155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Ruby) metrics: - name: pass@1 type: pass@1 value: 0.0124 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Racket) metrics: - name: pass@1 type: pass@1 value: 0.0007 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 0.2184 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Scala) metrics: - name: pass@1 type: pass@1 value: 0.2761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Bash) metrics: - name: pass@1 type: pass@1 value: 0.1046 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Swift) metrics: - name: pass@1 type: pass@1 value: 0.2274 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (TypeScript) metrics: - name: pass@1 type: pass@1 value: 0.3229 verified: false extra_gated_prompt: >- ## Model License Agreement Please read the BigCode [OpenRAIL-M license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) agreement before accepting it. extra_gated_fields: I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
提供机构:
daytoy-models
原始信息汇总

数据集卡片

数据集详情

数据集描述

  • 语言(NLP):

    • no
    • aa
  • 许可证: bigcode-openrail-m

  • 数据集:

    • bigcode/the-stack-dedup
  • 指标:

    • code_eval
  • 库名称: transformers

  • 标签:

    • code

模型索引

  • 名称: StarCoder

    • 任务类型: text-generation

    • 数据集:

      • 类型: openai_humaneval

      • 名称: HumanEval (Prompted)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.408
        • 验证: false
      • 类型: openai_humaneval

      • 名称: HumanEval

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.336
        • 验证: false
      • 类型: mbpp

      • 名称: MBPP

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.527
        • 验证: false
      • 类型: ds1000

      • 名称: DS-1000 (Overall Completion)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.26
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (C++)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.3155
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (C#)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2101
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (D)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.1357
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Go)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.1761
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Java)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.3022
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Julia)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2302
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (JavaScript)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.3079
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Lua)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2389
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (PHP)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2608
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Perl)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.1734
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Python)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.3357
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (R)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.155
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Ruby)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.0124
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Racket)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.0007
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Rust)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2184
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Scala)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2761
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Bash)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.1046
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (Swift)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.2274
        • 验证: false
      • 类型: nuprl/MultiPL-E

      • 名称: MultiPL-HumanEval (TypeScript)

      • 指标:

        • 名称: pass@1
        • 类型: pass@1
        • 值: 0.3229
        • 验证: false
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

MedChain

MedChain是由香港城市大学、香港中文大学、深圳大学、阳明交通大学和台北荣民总医院联合创建的临床决策数据集,包含12,163个临床案例,涵盖19个医学专科和156个子类别。数据集通过五个关键阶段模拟临床工作流程,强调个性化、互动性和顺序性。数据来源于中国医疗网站“iiYi”,经过专业医生验证和去识别化处理,确保数据质量和患者隐私。MedChain旨在评估大型语言模型在真实临床场景中的诊断能力,解决现有基准在个性化医疗、互动咨询和顺序决策方面的不足。

arXiv 收录