five

Characterisation of Feedstocks - D6 Final Report (Phase 1) - Appendix 10 - Part 1: Willow SRC study 1 graphs

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
下载链接:
https://ukerc.rl.ac.uk/cgi-bin/eti_query.pl?UWant=70
下载链接
链接失效反馈
资源简介:
This document describes the characteristics of Willow SRC in terms of moisture content, net and gross calorific value, dry ash content and its variability, dry nitrogen content, dry chlorine, barium, beryllium, chromium, cobalt, copper, molybdenum, nickel, vanadium, zinc, arsenic, antimony, mercury, cadmium, lead, fluorine, bromine, aluminium, calcium, iron, potassium, manganese, sodium, phosphorus, silicon and titanium content. This document is one of the 13 appendices to the Final Report from the first Phase (2015/16) of the Characterisation of Feedstocks (CofF) project, the primary purpose of which is to provide an understanding of UK produced biomass properties, how these vary and what causes this variability. The purpose of this report plus its related parts is to report the variability in feedstock properties of UK produced energy biomass, the causes of these variations and the relationship between the feedstock properties and the provenance data collected. Five feedstocks were studied: Miscanthus, willow short rotation coppice (SRC), poplar SRC, poplar grown as short rotation forests (SRF), and spruce SRF, with poplar and Sitka spruce selected to represent broadleaved and coniferous biomass crops respectively. Provenance data include site properties (such as general climate zone and soil chemistry), the conditions at the time of sample collection, and past management of the site and crop with soil samples also collected for analysis. The feedstock samples were analysed in UKAS accredited laboratories.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录

LOL (LOw-Light dataset)

LOL 数据集由 500 个低光和正常光图像对组成,分为 485 个训练对和 15 个测试对。低光图像包含照片捕获过程中产生的噪声。大多数图像是室内场景。所有图像的分辨率均为 400×600。

OpenDataLab 收录