five

mnoukhov/openai_summarize_generated_10k

收藏
hugging_face2023-12-15 更新2024-03-04 收录
下载链接:
https://hf-mirror.com/datasets/mnoukhov/openai_summarize_generated_10k
下载链接
链接失效反馈
资源简介:
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 18033740 num_examples: 10000 download_size: 10969719 dataset_size: 18033740 --- # Dataset Card for "openai_summarize_generated_10k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
提供机构:
mnoukhov
原始信息汇总

数据集概述

数据集名称

  • openai_summarize_generated_10k

配置信息

  • 默认配置 (default)
    • 数据文件路径: data/train-*

数据特征

  • 特征名称: prompt
    • 数据类型: string
  • 特征名称: chosen
    • 数据类型: string
  • 特征名称: rejected
    • 数据类型: string

数据分割

  • 分割名称: train
    • 字节数: 18033740
    • 样本数量: 10000

数据集大小

  • 下载大小: 10969719
  • 数据集大小: 18033740
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。

国家海洋科学数据中心 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

UCF-Crime

UCF-犯罪数据集是128小时视频的新型大规模第一个数据集。它包含1900年长而未修剪的真实世界监控视频,其中包含13个现实异常,包括虐待,逮捕,纵火,殴打,道路交通事故,入室盗窃,爆炸,战斗,抢劫,射击,偷窃,入店行窃和故意破坏。之所以选择这些异常,是因为它们对公共安全有重大影响。这个数据集可以用于两个任务。首先,考虑一组中的所有异常和另一组中的所有正常活动的一般异常检测。第二,用于识别13个异常活动中的每一个。

OpenDataLab 收录